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Overview of today’s material

▶ Bayesian estimation
▶ Overview of Stan
▶ Manipulating and plotting Stan output
▶ Examples of time series models



Review of models we’ve used so far

Models
▶ Regression
▶ ARMA models
▶ State Space Models
▶ Dynamic Linear Models
▶ Dynamic Factor Analysis
▶ Multivariate time series models)



Why Bayesian?

▶ Complex hierarchical models
▶ Non-linear models
▶ Hierarchical or shared parameters
▶ Non-normal data
▶ Prior information

▶ Inference: what’s the probability that the data are less than
some threshold?

▶ No bootstrapping!
▶ We get credible intervals for parameters and states

simultaneously



Bayesian logic

▶ Conditional probability

P(θ|y)P(y) = P(θ)P(y|θ)

P(θ|y) = P(θ)P(y|θ)
P(y)

▶ P(y) is a normalizing constant that we often don’t have to
worry about



Bayesian logic

▶ Parameters are random, data are fixed

▶
P(θ|y) = P(θ)P(y|θ)

▶ P(θ|y) is the posterior

▶ P(y|θ) is the likelihood

▶ P(θ) is the prior



Bayesian logic



Bayesian logic

▶ Difference between posterior and prior represents how much we
learn by collecting data

▶ Experiment {H, H, T, H, H, T, H, H}



Bayesian mechanics

▶ MLE seeks to find the combination of parameters that
maximize the likelihood (e.g. find absolute best point)

▶ Bayesian estimation uses integration to find the combination of
parameters that are best on average



Bayesian mechanics in practice



Estimation

▶ Goal of Bayesian estimation in drawing samples from the
posterior P(θ|y)

▶ For very simple models, we can write the analytical solution for
the posterior

▶ But for 99% of the problems we work on, need to generate
samples via simulation

▶ Markov chain Monte Carlo



Estimation



Estimation
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Estimation
▶ Thousands of proposals later, we have a MCMC chain
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Estimation: best practices

▶ Run 3-4 MCMC chains in parallel

▶ Discard first ~ 10-50% of each MCMC chain as a ‘burn-in’

▶ Optionally apply MCMC thinning to reduce autocorrelation



Lots of algorithms for sampling

▶ Metropolis, Metropolis-Hastings

▶ Sampling - Imporance - Resampling (SIR)

▶ No-U-Turn Sampler (NUTS)

▶ Monahan et al. 2016, Faster estimation of Bayesian models in
ecology using Hamiltonian Monte Carlo

https://besjournals.onlinelibrary.wiley.com/doi/abs/10.1111/2041-210X.12681
https://besjournals.onlinelibrary.wiley.com/doi/abs/10.1111/2041-210X.12681


What is Stan?

▶ Powerful, cross-platform and cross-language (R, Julia, Matlab,
etc) that allows users to write custom code that can be called
directly from R

▶ Estimation can be fully or approximate Bayesian inference, or
maximum a posteriori optimization (BFGS)

▶ Useful links:
▶ Stan homepage
▶ Stan manual
▶ rstan

https://mc-stan.org/
https://mc-stan.org/users/documentation/
https://cran.r-project.org/web/packages/rstan/index.html


Options for using Stan in this class

▶ Write your own code (based on examples in the manual, etc)

▶ Use an existing package

▶ Use our bundled code to get started with simple models (we’ll
start here)



Existing packages: rstanarm and brms

▶ Both packages very flexible, and allow same syntax as basic
lm/glm or lmer models, e.g.

rstan::stan_lm
rstan::stan_glm
rstan::stan_glmer

▶ Vignettes brms rstanarm

http://paul-buerkner.github.io/brms/
http://mc-stan.org/rstanarm/articles/rstanarm.html


Existing packages: rstanarm and brms

▶ Very flexible brms includes autocorrelated errors, non-normal
data, non-linear smooths (GAMs), etc.

▶ Limitations related to this class:

▶ allows multivariate data, but not multivariate time series
models brms example

https://cran.r-project.org/web/packages/brms/vignettes/brms_multivariate.html


Existing packages: rstanarm and brms

brms offers notation that should be very familiar to run many
classes of models,
brms::brm(y ~ x * z + (1|group), data=d)
brms::brm(y01 ~ x * z + (1|group), data=d,

family = binomial("logit"))
brms::brm(bf(y ~ s(x)), data=d)

▶ smooths can also be of 2-d models (e.g. spatial models)



Existing packages: rstanarm and brms

brms allows ARMA correlation structures that we’re familiar with,
data("LakeHuron")
LakeHuron <- as.data.frame(LakeHuron)
fit <- brm(x ~ arma(p = 2, q = 1),

data = LakeHuron)

▶ also includes spatial models (car, sar)
▶ does not include these in the context of state space models



Example: linear regression in brms

6

7

8

9

10

1940 1945 1950 1955 1960
Year

lo
g(

ai
rm

ile
s)

Passenger Miles on Commercial US Airlines



Example: linear regression and AR(1) models in brms

▶ Regression
lm_fit = brms::brm(log(airmiles) ~ year, data=df)

▶ Question: how would we change the code to be an AR(1)
model?

lm_ar= brms::brm(log(airmiles) ~ arma(p = 1, q = 0),
data=df)

▶ Defaults to 4 MCMC chains, 2000 iterations, 1000 burn-in



Example: linear regression and AR(1) models in brms

▶ lm_ar is a “brmsfit” object and has a bunch of convenient
plotting functions

plot(lm_ar)
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Example: linear regression and AR(1) models in brms

▶ Pairs plots
pairs(lm_ar)
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Example: linear regression and AR(1) models in brms

▶ Posterior predictive checks
pp_check(lm_ar)

6 7 8 9 10

y

y rep



Example: linear regression and AR(1) models in brms

▶ Shinystan
shinystan::launch_shinystan(lm_ar)



Example: linear regression and AR(1) models in brms

▶ Additional functionality / diagnostics in bayesplot

mcmc_areas(lm_ar,c("sigma","b_Intercept","ar[1]"))
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Plotting with Stan output

These plots only the tip of the iceberg for plotting. For more great
examples of the kinds of plots avaialable, see these vignettes:

▶ Examples on Stan

▶ Jonah Gabry’s introduction to bayesplot

▶ Matthew Kay’s introduction to bayesplot and tidybayes

https://mc-stan.org/users/interfaces/bayesplot
https://cran.r-project.org/web/packages/bayesplot/vignettes/plotting-mcmc-draws.html
https://cran.r-project.org/web/packages/tidybayes/vignettes/tidybayes.html


Customized models and code for this class

▶ We’ll need to install these packages to run Stan,
install.packages("rstan",

repos = "https://cloud.r-project.org")
install.packages("devtools",

repos = "https://cloud.r-project.org")

▶ And then we can install our custom package for the class with
bundled Stan time series models

devtools::install_github(repo="atsa-es/atsar")
library("atsar")



Models included

▶ atsar package includes:
▶ RW, AR and MA models (with and without drift)
▶ DLMs (intercept, slope, both)
▶ State space RW and AR models
▶ Flexible families for each model



More time series models: application to NEON EFI
Aquatics challenge

▶ Daily temperature and oxygen data available from Barco Lake
in Florida
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‘atsar’ package: random walk and AR(1) models

This model should be familiar,

E [Yt ] = E [Yt−1] + et−1

* Note that the use of the argument model_name and est_drift.
By not estimating drift, we assume the process is stationary with
respect to the mean
rw = fit_stan(y = neon$oxygen,

est_drift = FALSE, model_name = "rw")



‘atsar’ package: univariate state space models

▶ Specify the MCMC parameters
rw = fit_stan(y = neon$oxygen,

est_drift = FALSE,
model_name = "rw",
mcmc_list = list(n_mcmc = 2000, n_burn = 500,

n_chain = 3, n_thin = 1))



‘atsar’ package: univariate state space models

State equation:
xt = ϕx t−1 + εt−1

where εt−1 ∼ Normal(0, q)

Observation equation:

Yt ∼ Normal(xt , r)

▶ Let’s compare models with and without the AR parameter ϕ in
the process model



‘atsar’ package: univariate state space models

We can first run the model with ϕ,
ss_ar = fit_stan(y = neon$oxygen,

est_drift=FALSE, model_name = "ss_ar",
mcmc_list = list(n_mcmc = 2000, n_chain = 1, n_thin = 1,n_burn=1000))

then without,
ss_rw = fit_stan(y = neon$oxygen,

est_drift=FALSE, model_name = "ss_rw",
mcmc_list = list(n_mcmc = 2000, n_chain = 1, n_thin = 1,n_burn=1000))



‘atsar’ package: univariate state space models

Did the models converge?

▶ One quick check is to look at the value of R-hat for each
parameter (generally should be small, < 1.1 or < 1.05)

rw_summary <- summary(ss_rw, pars = c("sigma_process","sigma_obs"),
probs = c(0.1, 0.9))$summary

print(rw_summary)

## mean se_mean sd 10% 90%
## sigma_process 0.25328836 0.001908073 0.008570219 0.24188715 0.26390167
## sigma_obs 0.04480232 0.005540708 0.014138820 0.02914101 0.06444592
## n_eff Rhat
## sigma_process 20.174086 0.9990057
## sigma_obs 6.511721 1.0170924



‘atsar’ package: univariate state space models

▶ Calculate maximum Rhat across all parameters,
rhats <- summary(ss_rw)$summary[,"Rhat"]
print(max(rhats))

## [1] 1.017997

▶ Reminder: we only ran one chain / 2000 iterations, so overall
not bad!



‘atsar’ package: univariate state space models

▶ Tidy summaries from Stan output: Using the broom.mixed
package, we can also extract some tidy summaries of the
output

coef = broom.mixed::tidy(ss_ar)
head(coef)

## # A tibble: 6 x 3
## term estimate std.error
## <chr> <dbl> <dbl>
## 1 sigma_process 0.261 0.00731
## 2 pred[1] 8.22 0.0228
## 3 pred[2] 8.10 0.0263
## 4 pred[3] 9.05 0.0247
## 5 pred[4] 9.00 0.0230
## 6 pred[5] 8.83 0.0237



‘atsar’ package: univariate state space models

▶ We can use this to look at predictions versus our data
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‘atsar’ package: univariate state space models

▶ We can use this to look at predictions versus our data
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‘atsar’ package: univariate state space models
▶ We can use this to look at predictions versus our data
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##‘atsar’ package: raw samples

▶ tidy() functions great at summarizing
▶ fit_stan() returns ‘stanfit’ object that we can use

rstan::extract() on to get raw posterior draws, by chain
pars = extract(ss_ar)

▶ returns list of parameters we can access directly, e.g.
summary(pars$sigma_process)

##‘atsar’ package: model selection

▶ Best practice is to use Leave One Out Information Criterion
(LOOIC) in loo package

▶ We can compare the LOOIC from the 2 models (AR vs RW)

loo_ar = (loo::loo(ss_ar))
loo_rw = (loo::loo(ss_rw))



‘atsar’ package: DLMs

▶ For comparison to MARSS, we’ll use Mark’s example of
logit-transformed survival from the Columbia River. We can
think about setting the DLM up in the slope or the intercept.
For this first example, we’ll do the latter.
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‘atsar’ package: DLMs

▶ Fit DLM with random walk in intercept
mod = fit_stan(y = SalmonSurvCUI$logit.s,

model_name="dlm-intercept",
mcmc_list = list(n_mcmc = 2000,

n_chain = 1, n_thin = 1,n_burn=1000))

▶ Fit DLM with random walk in slope
mod_slope = fit_stan(y = SalmonSurvCUI$logit.s,

x = SalmonSurvCUI$CUI.apr,
model_name="dlm-slope",
mcmc_list = list(n_mcmc = 2000,

n_chain = 1, n_thin = 1,n_burn=1000))



‘atsar’ package: DLMs

Let’s look at predictions using the rstan::extract() function



‘atsar’ package: DLMs
Let’s look at predictions using the rstan::extract() function
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Extra extensions

▶ family argument in fit_stan allows to have flexible families
▶ e.g., fit a Poisson or binomial DLM with

mod = fit_stan(y = SalmonSurvCUI$logit.s,
model_name="dlm-intercept",
family="binomial")

mod = fit_stan(y = SalmonSurvCUI$logit.s,
model_name="dlm-intercept",
family="poisson")



Summary

▶ Bayesian implementation of time series models in Stan can do
everything that MARSS can do and more!

▶ Very flexible language, great developer community

▶ Widely used by students in SAFS / UW / QERM / etc

▶ Please come to us with questions, modeling issues, or add to
code in our packages to make them better!


