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Week 3: State-Space Models

We are now starting a 5 lecture block on Gaussian state-space models.

Lectures 1 & 2: building blocks for analysis of multivariate time-series data
with observation error, structure, and missing values

Lectures 3-5: Specific applications: covariates, dynamic factor analysis,
dynamic linear models

Properties of time series data

AR and MA models: 

Today: State-space models (observation error and hidden random
walks)
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Univariate linear state-space model

The  model is the classic “random walk” with drift.

 are the observatons.

This model is a random walk observed with (Gaussian) error.

= + u + , ∼ N(0, q)xt xt−1 wt wt

= + , ∼ N(0, r)yt xt vt vt

x

y
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Univariate linear state-space model

There are many textbooks on this class of model. It is used in extensively in
economics and engineering.

  

= + u + , ∼ N(0, q)xt xt−1 wt wt

= + , ∼ N(0, r)yt xt vt vt
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AR(1) or AR lag-1

All of these are examples:

= + u +xt xt−1 wt

= +xt+1 xt wt

= b + u +xt xt−1 wt
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Why is the random walk with drift model so
important in analysis of ecological data?

Additive random walks

= + u + , ∼ N(0, q)xt xt−1 wt wt

Movement, changes in gene frequency, somatic growth if growth is by
fixed amounts

Why Gaussian? The average of many small perturbations, regardless of
their distribution, is Gaussian.

·

·
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Multiplicative random walks

= λ , log( ) ∼ N(0, q)nt nt−1et et

Population growth, somatic growth if growth is by percentage

Take the log and you get the linear additive model above. log-normal error
distribution means that 10% increase is as likely as 10% decrease

·

·
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Gompertz model

Addition of  with  leads to process model with mean-reversion.

In the ecological literature on density-dependent processes, you may see this
in non-log notation:

 is population size.

b 0 < b < 1

= exp(u + )Nt wt N b

t−1

Nt

8/36



Gompertz model

Take the log, and we have

It is not required that  is Gaussian but that is a common assumption.
Dynamics of processes with non-Gaussian errors, esp long-tailed errors, is a
common extension. Autocorrelated errors could be implemented with MA
process or covariates.

= b + u +xt xt−1 wt

∼ N(0, q)wt

wt
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Gompertz model
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Simple model, great flexibility

An random walk can show a wide-range of trajectories, even for the same
parameter values. All trajectories below came from the same random walk
model: , .= − 0.02 +xt xt−1 wt ∼ N(mean = 0.0, var = 0.01)wt
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Definition: state-space

The “state” is a hidden (dynamical) variable. In this class, it will be a hidden
random walk or AR(1) process.

Our data are observations of this hidden state.

Often state-space models include inputs (explanatory variables) and the state
or the data may be multivariate.

The model you are seeing today is a simple univariate state-space model with
no inputs.

state: 

observation: 

= + u +xt xt−1 wt

= +yt xt vt
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Example: population count data

Yearly, usually, population or subpopulation counts, possibly with missing
values.
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Example: population count data

The data are observations of a hidden ‘true’ population size. The data are
observations of that hidden state and have observation error.
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Observation error

This is a survey photograph for Steller sea lions in the Gulf of Alaska. There IS
some number of sea lions in our population in year , but we don’t know that
number precisely. It is “hidden”.

t
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The observation error variance is often
unknowable in fisheries and ecological
analyses

Sightability varies due to factors that may not be fully understood or
measureable

Sampling variability–due to how you actually count animals–is just one
component of observation variance

Environmental factors (tides, temperature, etc.)

Population factors (age structure, sex ratio, etc.)

Species interactions (prey distribution, prey density, predator distribution
or density, etc.)

·

·

·
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Process versus observaton variability

Suppose we have the following data (say, population density logged)

17/36



Fit a linear regression

The model of the hidden state in this case is . The observation
model is . All variability = non-process or observation variability.

= α + βtxt

= +yt xt vt
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Fit a random walk model

The model of the hidden state in this case is . The
observation model is . All variability = process variability.

= α + +xt xt−1 wt

=yt xt
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Fit a state-space model

Autoregressive state-space models fit a random walk AR(1) through the data.
The variabilty in the data contains both process and non-process
(observation) variability.
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Non-process variability

Observation or “non-process” error is the difference between the hidden
state (blue line) and the observation (X).
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Process variability

Process error is the difference between the expected  given data up to time
 (x in the plot) and the actual  at time .

xt

t − 1 x t
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PVA example

One use of univariate state-space models is “count-based” population
viability analysis (chap 7 HWS2014)
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How you model your data has a large impact
on your forecasts
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How can we separate process and non-process
variance?

Wouldn’t these two variances be impossible to separate?
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They have different temporal patterns.
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Nile River example
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Kalman filter and smoother

The Kalman filter and smoother is an algorithm for computing the expected
value of the  from the data and the model parameters.xt

= + u + , ∼ N(0, q)xt xt−1 wt wt

= + , ∼ N(0, r)yt xt vt vt
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Diagnostics

Innovations residuals aka, one-step ahead residuals, same ones we used for
ARMA models

data at time  minus model predictions given data up to 

In the MARSS package, the one-step ahead residuals are returned by

This is fairly standard for models that fit state-space models.

Standard diagnostics

t t − 1

= E[ | ]yt̂ Yt yt−1

residuals(fit)

ACF

Normality

·

·

30/36



MARSS package

We will be using the MARSS package to fit univariate and multivariate state-
space models.

The main function is MARSS():

data are a vector or a matrix with time going along the columns.

model list is a list with the structure of all the parameters.

fit <- MARSS(data, model=list())
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MARSS model notation

The MARSS model list follows this notation one-to-one.

= B + U + , ∼ N(0, Q)xt xt−1 wt wt

= Z + A + , ∼ N(0, R)yt xt vt vt
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Write as where everything bold is a matrix.

= + u + , ∼ N(0, q)xt xt−1 wt wt

= + , ∼ N(0, r)yt xt vt vt

= B + U + , ∼ N(0, Q)xt xt−1 wt wt

= Z + A + , ∼ N(0, R)yt xt vt vt

mod.list <- list(
  U = matrix("u"),
  x0 = matrix("x0"),
  B = matrix(1),
  Q = matrix("q"),
  Z = matrix(1),
  A = matrix(0),
  R = matrix("r"),
  tinitx = 0
)
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Diagnostics and plotting

Use

where fit is returned by MARSS() to see the standard diagnostics.

autoplot(fit)
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Output

fit <- MARSS()

coef(fit) to get the estimated parameters

tidy(fit) to get estimated parameters with CIs

tsSmooth() to get the estimates states or use fit$states

fitted() to get the model estimates of mean y

fr <- forecast(fit, h=5, interval="prediction") predictions

autoplot(fr) plot the forecast

·

·

·

·

·

·
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Let’s see some examples

We will go through these in class

example 1

example 2

example 3

example 4

·

·

·

·
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https://atsa-es.github.io/atsa/Lectures/Week%203/univariate_example_1.R
https://atsa-es.github.io/atsa/Lectures/Week%203/univariate_example_2.R
https://atsa-es.github.io/atsa/Lectures/Week%203/univariate_example_3.R
https://atsa-es.github.io/atsa/Lectures/Week%203/univariate_example_4.R

