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Week 3: State-Space Models

We are now starting a 5 lecture block on Gaussian state-space models.

Lectures 1 & 2: building blocks for analysis of multivariate time-series data with
observation error, structure, and missing values

Lectures 3-5: Specific applications: covariates, dynamic factor analysis, dynamic
linear models

- Properties of time series data
- AR and MA models: £y = byxi_1 + baxi_9 + €

-+ Today: State-space models (observation error and hidden random walks)
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Lecture 1-5

How models treat the changing level in a model.
Yt = Tt + €

- Classic ARMA - “Get rid of it!” Difference the data until the mean (m;) is
eliminated, then model what is left.

- ETS (Holt + Holt/Winters) - “Compute by using additive sums of the past
observations”

- State-Space Auto-regressive - “Model it with a random walk”

Approaches 1 & 2 don't really care about x;. But when we are trying to
understand a system, we care a lot about x;
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Univariate linear state-space model

Tt = Tt—1 + U+ We, Wg N(07Q)
Yt = Tt + V¢, V¢ NN(OaT)
The £ model is the classic “random walk” with drift.

y are the observatons.

This model is a random walk observed with (Gaussian) error.
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Univariate linear state-space model

Ty = Ti—1 +u+ wg, we~ N(0,q)
Yy = Ty + v, v ~ N(0,7)

There are many textbooks on this class of model. It is used in extensively in
economics and engineering.

Forecasting, : )
structural time Time Series

series models and An
the Kalman filter and Its

Applications
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AR(1) or AR lag-1

All of these are examples:
Ty = Ty—1 T U+ Wy
Tir] = Tt + Wy

ry = bxry_1 +u+ wy
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Why is the random walk with drift model so
important in analysis of ecological data?

Additive random walks

Ty =T 1+ u+wy, we~ N(0,q)

- Movement, changes in gene frequency, somatic growth if growth is by fixed
amounts

- Why Gaussian? The average of many small perturbations, regardless of their
distribution, is Gaussian.
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Multiplicative random walks
ny = An;_1€4, log(es) ~ N(0,q)
- Population growth, somatic growth if growth is by percentage

- Take the log and you get the linear additive model above. log-normal error
distribution means that 10% increase is as likely as 10% decrease
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Gompertz model

Addition of bwith 0 < b < 1 leads to process model with mean-reversion.

In the ecological literature on density-dependent processes, you may see this in
non-log notation:

N; = exp(u + 'wt)Ntb_l

N} is population size.
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Gompertz model

Take the log, and we have
T = bxri1 + u+ wy
wy ~ N(07 Q)

It is not required that w, is Gaussian but that is a common assumption.
Dynamics of processes with non-Gaussian errors, esp long-tailed errors, is a
common extension. Autocorrelated errors could be implemented with MA
process or covariates.
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Gompertz model
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Simple model, great flexibility

An random walk can show a wide-range of trajectories, even for the same
parameter values. All trajectories below came from the same random walk
model: ; = ;1 — 0.02 4+ wy, wy ~ N(mean = 0.0, var = 0.01).
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Definition: state-space

The “state” is a hidden (dynamical) variable. In this class, it will be a hidden
random walk or AR(1) process.

Our data are observations of this hidden state.

Often state-space models include inputs (explanatory variables) and the state or
the data may be multivariate.

The model you are seeing today is a simple univariate state-space model with no
inputs.

state: xy = 41 + U + Wy

observation: y; = T+ + v
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Example: population count data

The data are observations of a hidden ‘true’ population size. The data are
observations of that hidden state and have observation error.

African wild dogs population counts
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Observation error

This is a survey photograph for Steller sea lions in the Gulf of Alaska. There IS
some number of sea lions in our population in year ¢, but we don’'t know that
number precisely. It is “hidden”.
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The observation error variance is often
unknowable in fisheries and ecological analyses

Sightability varies due to factors that may not be fully understood or
measureable

- Environmental factors (tides, temperature, etc.)
- Population factors (age structure, sex ratio, etc.)

- Species interactions (prey distribution, prey density, predator distribution or
density, etc.)

Sampling variability-due to how you actually count animals-is just one
component of observation variance
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Process versus observaton variability

Suppose we have the following data (say, population density logged)
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Fit a linear regression

The model of the hidden state in this case is ; = a + Bt. The observation
model is y; = x; + v;. All variability = non-process or observation variability.

log(N)
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Fit a random walk model

The model of the hidden state in this caseis x; = o + ;1 + w¢. The
observation model is y; = x¢. All variability = process variability.
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Fit a state-space model

Autoregressive state-space models fit a random walk AR(1) through the data. The
variabilty in the data contains both process and non-process (observation)
variability.
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Non-process variability

Observation or “non-process” error is the difference between the hidden state
(blue line) and the observation (X).
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Process variability

Process error is the difference between the expected x; given data up to time
t — 1 (xin the plot) and the actual x at time {.
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How you model your data has a large impact on

your forecasts
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How can we separate process and non-process
variance?

Wouldn’t these two variances be impossible to separate?
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They have different temporal patterns.

process is autocorrelated

o _| o
P IS S
[}
N - —
o o o
' o -
o
- -
o ] - _
< = S
S ] < N -
I.O_ ] - -
N g g
T T T T ' T T T T < T T T T
5 10 15 20 5 10 15 20 5 10 15 20
observation error is not
o] =
o~ o
o
- s
S o |
o
o
o | S 7 = _
e <
- N
- =} o
O. . T
| | | I | | | I | | | |
5 10 15 20 5 10 15 20 5 10 15 20

25/32



Kalman filter and smoother

The Kalman filter and smoother is an algorithm for computing the expected
value of the x; from the data and the model parameters.

Ty =T 1+ u+wy we~ N(0,q)

yr = &y + v, v ~ N(0,7)
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Diagnostics

Innovations residuals aka, one-step ahead residuals, same ones we used for
ARMA models

data at time £ minus model predictions given datauptot — 1
Yt = EYi|ys—1]
In the MARSS package, the one-step ahead residuals are returned by

residuals(fit)

This is fairly standard for models that fit state-space models.
Standard diagnostics

. ACF

- Normality
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MARSS package

We will be using the MARSS package to fit univariate and multivariate state-space
models.

The main function is MARSS():
fit <— MARSS(data, model=list())

data are a vector or a matrix with time going along the columns.

model list is a list with the structure of all the parameters.
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MARSS model notation

x+ = Bxy 1 + U + wy, ’thN(OaQ)
yr = Lixy + A + vy, 'UtNN(OaR)

The MARSS model list follows this notation one-to-one.
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T =1 +u+wy, we~ N(0,q)
Yy = Ty + v, v ~ N(0,7)
Write as where everything bold is a matrix.
ry =Bz 1+ U+ w;, wy ~N(0,Q)
Yy = Ly + A+ v, v ~ N(O,R)

mod. list <— list(
U = matrix("u"),

X0 = matrix('xe"),
B = matrix(1),

Q = matrix("q"),

Z = matrix(1),

A = matrix(0),

R = matrix("r"),

tinitx = 0
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Output

fit <— MARSS()

coef(fit) to get the estimated parameters
- tidy(fit) to get estimated parameters with Cls
- tsSmooth() to get the estimates states or use fit$states
fitted() to get the model estimates of meany
fr <— forecast(fit, h=5, interval="prediction") predictions

- autoplot(fr) plot the forecast, show diagnostics
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Let's see some examples

We will go through these in class

-+ example 1
- example 2
- example 3

-+ example 4
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https://atsa-es.github.io/atsa/Lectures/Week%203/univariate_example_1.R
https://atsa-es.github.io/atsa/Lectures/Week%203/univariate_example_2.R
https://atsa-es.github.io/atsa/Lectures/Week%203/univariate_example_3.R
https://atsa-es.github.io/atsa/Lectures/Week%203/univariate_example_4.R

