
Fitting and Selecting ARIMA models
FISH 550 – Applied Time Series Analysis Download Rmd pdf

Eli Holmes

6 Apr 2023

https://atsa-es.github.io/atsa/Lectures/Week%202/lec_04_Fitting_and_Selecting_ARMA_models.Rmd
https://atsa-es.github.io/atsa/Lectures/Week%202/lec_04_Fitting_and_Selecting_ARMA_models.pdf


Box-Jenkins method

A. ARIMA(p,d,q) Model selection

1. Evaluate stationarity
2. Fix stationarity problems - Select the differencing level (d)
3. Selection of the AR level (p)
4. Selection of the MA level (q)

B. Parameter estimation

C. Model checking

1. Test model residuals for distribution assumptions
(e.g. Normality)

2. Test model residuals for temporal correlation



▶ For ARIMA models, much of the Box-Jenkins method will be
automated with the forecast package functions, which you will
use in the lab.



Stationarity

Stationarity means ‘not changing in time’ in the context of
time-series models. Typically we test the trend and variance,
however more generally all statistical properties of a time-series is
time-constant if the time series is ‘stationary’.



Example

Many ARMA models exhibit stationarity. White noise is one type:

xt = et , et ∼ N(0, σ)
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Example
An AR-1 process with −1 < ϕ < 1

xt = ϕxt−1 + et

is also stationary.
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Stationarity around non-zero mean
We can also have stationarity around a non-zero level or around a
linear trend.
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Mathematically it looks like this

AR-1 (-1 < ϕ < 1)

1. Non-zero mean adds µ: xt = µ + ϕxt−1 + et
2. Linear trend adds at: xt = µ + at + ϕxt−1 + et

White noise (ϕ = 0)

1. Non-zero mean: xt = µ + et
2. Linear trend: xt = µ + at + et



Non-stationarity

One of the most common forms of non-stationarity that is tested for
is that the process is a random walk xt = xt−1 + et . A random walk
is called a ‘unit root’ process in the time series literature. A test for
an underlying random walk is called a ‘unit root’ test.
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Random walk with µ and at added

Similar to the way we added an intercept and linear trend to
stationary process equations, we can do the same to the random
walk equation.

1. Non-zero mean or intercept: xt = µ + xt−1 + et

2. Linear trend: xt = µ + at + xt−1 + et



Random walk with µ and at added
The effects are fundamentally different however. The addition of µ
leads to a upward trend while the addition of at leads to exponential
growth (or decline). All of these are “unit root” processes.
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Testing for stationarity

Why is evaluating stationarity important?

For this lecture, we are using the Box-Jenkins method for
forecasting. Step 1 is to create a transformed stationary time series
that we can fit an ARMA model to (Wold Decomposition).

In a real data analysis, there are other reasons:

▶ Many standard algorithms for fitting ARMA models assume
stationarity.

▶ Many AR models are stationary. If your data are not, you are
fitting a model that is fundamentally inconsistent with your
data.

▶ Many processes in environmental science are fundamentally
random walks, i.e. non-stationary, e.g. movement, population
growth, genetic drift.



Testing for stationarity

We will discuss three common approaches to evaluating stationarity:

▶ Visual test
▶ (Augmented) Dickey-Fuller test
▶ KPSS test



Visual test

The visual test is simply looking at a plot of the data versus time.
Look for

▶ Change in the level over time. Is the time series increasing or
decreasing? Does it appear to cycle?

▶ Change in the variance over time. Do deviations away from the
mean change over time, increase or decrease?
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Dickey-Fuller test

The Dickey=Fuller test (and Augmented Dickey-Fuller test) look for
evidence that the time series has a unit root (a random walk
process).

The null hypothesis is that the time series has a unit root, that is,
it has a random walk component.

The alternative hypothesis is some variation of stationarity. The
test has three main versions.



Dickey-Fuller nulls and alternatives

It is hard to see but in the panels on the left, the variance around
the trend is increasing and on the right, it is not.
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Dickey-Fuller test using tseries::adf.test()

adf.test() in the tseries package will apply the Augmented
Dickey-Fuller with a constant and trend and report the p-value.
We want to reject the Dickey=Fuller null hypothesis of
non-stationarity. We will set k=0 to apply the Dickey-Fuller test
which tests for AR(1) stationarity. The Augmented Dickey-Fuller
tests for more general lag-p stationarity.

adf.test(x, alternative = c("stationary", "explosive"),
k = trunc((length(x)-1)^(1/3)))



Dickey-Fuller tests on the anchovy time series

Here is how to apply this test to the anchovy data. The null
hypothesis is not rejected. That is not what we want.
adf.test(anchovyts, k=0)

##
## Augmented Dickey-Fuller Test
##
## data: anchovyts
## Dickey-Fuller = -3.4558, Lag order = 0, p-value =
## 0.07003
## alternative hypothesis: stationary



Dickey-Fuller test with urca::ur.df

The urca R package can also be used to apply the Dickey-Fuller
tests. Use lags=0 for Dickey-Fuller which tests for AR(1)
stationarity. We will set type="trend" to deal with the trend seen
in the anchovy data. Note, adf.test() uses this type by default.

ur.df(y, type = c("none", "drift", "trend"), lags = 0)

▶ none: xt = ϕxt−1 + et
▶ drift: xt = ϕxt−1 + µ + et
▶ trend: xt = ϕxt−1 + µ + at + et



Dickey-Fuller test with ‘ur.df’

test = urca::ur.df(anchovyts, type="trend", lags=0)
test

##
## ###############################################################
## # Augmented Dickey-Fuller Test Unit Root / Cointegration Test #
## ###############################################################
##
## The value of the test statistic is: -3.4558 4.3568 5.9805



Dickey-Fuller test with ‘ur.df’

The test statistics and the critical values at α = 0.05 are
attr(test, "teststat")

## tau3 phi2 phi3
## statistic -3.455795 4.356764 5.980506
attr(test,"cval")

## 1pct 5pct 10pct
## tau3 -4.15 -3.50 -3.18
## phi2 7.02 5.13 4.31
## phi3 9.31 6.73 5.61



The tau3 is the one we want. This is the test that γ = 0 which
would mean that ϕ = 0 (random walk).

xt = ϕxt−1 + µ + at + et

xt − xt−1 = γxt−1 + µ + at + et

The hypotheses reported in the output are

▶ tau (or tau2 or tau3): γ = 0
▶ phi reported values: are for the tests that γ = 0 and/or the

other parameters a and µ are also 0.

Since we are focused on the random walk (non-stationary) test, we
focus on the tau (or tau2 or tau3) statistics and critical values



attr(test, "teststat")

## tau3 phi2 phi3
## statistic -3.455795 4.356764 5.980506
attr(test,"cval")

## 1pct 5pct 10pct
## tau3 -4.15 -3.50 -3.18
## phi2 7.02 5.13 4.31
## phi3 9.31 6.73 5.61

The tau3 statistic is larger than the critical value and thus the null
hypothesis of non-stationarity is not rejected. That’s not what we
want. Note, you can also get the test statistic and critical values at
the bottom of the output from urca::summary(test).



KPSS test

The Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test has as the
null hypothesis that the time series is stationary around a level trend
(or a linear trend). The alternative hypothesis for the KPSS test is a
random walk.

tseries::kpss.test(x, null = c("Level", "Trend"))

The stationarity assumption is general; it does not assume a specific
type of stationarity such as white noise.

If both KPSS and Dickey-Fuller tests support non-stationarity, then
the stationarity assumption is not supported.



KPSS test with the anchovy data

tseries::kpss.test(anchovyts, null="Trend")

##
## KPSS Test for Trend Stationarity
##
## data: anchovyts
## KPSS Trend = 0.14779, Truncation lag parameter = 2,
## p-value = 0.04851

Here null="Trend" was included to account for the increasing
trend in the data. The null hypothesis of stationarity is rejected.
Thus both the KPSS and Dickey-Fuller tests support the hypothesis
that the anchovy time series is non-stationary. That’s not what we
want.



Fix stationarity problems

In this lecture we will use differencing, the I in ARIMA model refers
to differencing.



Differencing the data to make the mean stationary

Differencing means to create a new time series zt = xt − xt−1. First
order differencing means you do this once (so zt) and second order
differencing means you do this twice (so zt − zt−1).

The diff() function takes the first difference:
x <- diff(c(1,2,4,7,11))
x

## [1] 1 2 3 4

The second difference is the first difference of the first difference.
diff(x)

## [1] 1 1 1



Anchovy catch first differenced

Here is a plot of the anchovy data and its first difference.
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Stationarity of the first differences

Let’s test the anchovy data with one difference using the KPSS test.
diff.anchovy = diff(anchovyts)
kpss.test(diff.anchovy)

##
## KPSS Test for Level Stationarity
##
## data: diff.anchovy
## KPSS Level = 0.089671, Truncation lag parameter = 2,
## p-value = 0.1

The null hypothesis of stationairity is not rejected. That is good.



Stationarity of the first differences

Let’s test the first difference of the anchovy data using the
Augmented Dickey-Fuller test. We do the default test and allow it
to chose the number of lags.
adf.test(diff.anchovy)

##
## Augmented Dickey-Fuller Test
##
## data: diff.anchovy
## Dickey-Fuller = -3.2718, Lag order = 2, p-value =
## 0.09558
## alternative hypothesis: stationary



The null hypothesis of non-stationarity is not rejected. That is not
what we want. However, we differenced which removed the trend
thus we are testing against a more general model than we need.
Let’s test with an alternative hypothesis that has a non-zero mean
and no trend. We can do this with ur.df() and type='drift'.
test <- ur.df(diff.anchovy, type="drift")



The test statistic and the critical values are
attr(test, "teststat")

## tau2 phi1
## statistic -5.108275 13.15327
attr(test,"cval")

## 1pct 5pct 10pct
## tau2 -3.75 -3.00 -2.63
## phi1 7.88 5.18 4.12

The test statistic for τ2 is less than the critical at α equal 0.05. The
null hypothesis of NON-stationairity IS rejected. That is good.



forecast::ndiffs() function

As an alternative to trying many different differences, you can use
the ndiffs() function in the forecast package. This automates
finding the number of differences needed. ndiff(x, test="adf")
also “knows” to use a different Augmented Dickey Fuller test after
differencing.
forecast::ndiffs(anchovyts, test="kpss")

## [1] 1
forecast::ndiffs(anchovyts, test="adf")

## [1] 1

The test indicates that one difference (xt − xt−1) will lead to
stationarity.



Summary

Test stationarity before you fit a ARMA model.

Visual test: Do the data fluctuate around a level or do they have a
trend or look like a random walk?

Yes or maybe? -> Apply a “unit root” test. ADF or KPSS

No or fails the unit root test? -> Apply differencing and re-test.

Still not passing? -> Try a second difference or you may need to
transform the data (if say it has an exponential trend).

Still not passing? -> ARMA model might not be the best choice.
Or you may need to use an adhoc detrend.

These steps are automated by the forecast package



Box-Jenkins method

A. Model form selection

1. Evaluate stationarity
2. Selection of the differencing level (d) – to fix stationarity

problems
3. Selection of the AR level (p)
4. Selection of the MA level (q)

B. Parameter estimation

C. Model checking



ACF and PACF
On Tuesday, you learned how to use ACF and PACF to visually infer
the AR and MA lags for a ARMA model. Here is the ACF and
PACF of the differenced anchovy time series.
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Formal model selection

This weighs how well the model fits against how many parameters
your model has. Basic idea is to fit (many) models and use AIC,
AICc or BIC to select.

The auto.arima() function in the forecast package in R allows
you to easily do this and will also select the level of differencing (via
ADF or KPSS tests).
forecast::auto.arima(anchovy)

Type ?forecast::auto.arima to see a full description of the
function.



Model selection with auto.arima()

forecast::auto.arima(anchovy)

## Series: anchovy
## ARIMA(0,1,1) with drift
##
## Coefficients:
## ma1 drift
## -0.6685 0.0542
## s.e. 0.1977 0.0142
##
## sigma^2 = 0.04037: log likelihood = 5.39
## AIC=-4.79 AICc=-3.65 BIC=-1.13

The output indicates that the ‘best’ model is a MA(1) with first
difference. “with drift” means that the mean of the anchovy first
differences (the data for the model) is not zero.



Trace = TRUE
By default, step-wise selection is used for the model search. You
can see what models that auto.arima() tried using trace=TRUE.
The models are selected on AICc by default.
forecast::auto.arima(anchovy, trace=TRUE)

##
## ARIMA(2,1,2) with drift : 4.765453
## ARIMA(0,1,0) with drift : 0.01359746
## ARIMA(1,1,0) with drift : -0.1662165
## ARIMA(0,1,1) with drift : -3.647076
## ARIMA(0,1,0) : -1.554413
## ARIMA(1,1,1) with drift : Inf
## ARIMA(0,1,2) with drift : Inf
## ARIMA(1,1,2) with drift : 1.653078
## ARIMA(0,1,1) : -1.372929
##
## Best model: ARIMA(0,1,1) with drift

## Series: anchovy
## ARIMA(0,1,1) with drift
##
## Coefficients:
## ma1 drift
## -0.6685 0.0542
## s.e. 0.1977 0.0142
##
## sigma^2 = 0.04037: log likelihood = 5.39
## AIC=-4.79 AICc=-3.65 BIC=-1.13



Selected model

First difference of the data is MA(1) with drift

xt − xt−1 = µ + wt + θ1wt−1

where wt is white noise.



Fit to simulated AR(2) data

set.seed(100)
a1 = arima.sim(n=100, model=list(ar=c(.8,.1)))
forecast::auto.arima(a1, seasonal=FALSE, max.d=0)

## Series: a1
## ARIMA(1,0,0) with non-zero mean
##
## Coefficients:
## ar1 mean
## 0.6928 -0.5343
## s.e. 0.0732 0.2774
##
## sigma^2 = 0.7703: log likelihood = -128.16
## AIC=262.33 AICc=262.58 BIC=270.14

The ‘best-fit’ model is AR(1) not AR(2).



How often is the ‘true’ model is chosen

Let’s run 100 simulations of a AR(2) process and record the best
fits.
save.fits = rep(NA,100)
for(i in 1:100){

a1 = arima.sim(n=100, model=list(ar=c(.8,.1)))
fit = forecast::auto.arima(a1, seasonal=FALSE, max.d=0, max.q=0)
save.fits[i] = paste0(fit$arma[1], "-", fit$arma[2])

}



Overwhelmingly the correct type of model (AR) is selected, but
usually a simpler model of AR(1) is chosen over AR(2).

Table heading is AR order - MA order.
table(save.fits)

## save.fits
## 1-0 2-0 3-0 4-0
## 74 20 5 1



stepwise=FALSE

By default, step-wise selection is used and an approximation is used
for the models tried in the model selection step. For a final model
selection, you should turn these off to fit a large set of models.
forecast::auto.arima(anchovy, stepwise=FALSE,

approximation=FALSE)

## Series: anchovy
## ARIMA(0,1,1) with drift
##
## Coefficients:
## ma1 drift
## -0.6685 0.0542
## s.e. 0.1977 0.0142
##
## sigma^2 = 0.04037: log likelihood = 5.39
## AIC=-4.79 AICc=-3.65 BIC=-1.13



Summary: model selection and fitting

▶ Once you have dealt with stationarity, you need to determine
the order of the model: the AR part and the MA part.

▶ Although you could simply use auto.arima(), it is best to run
acf() and pacf() on your data to understand it better.
Definitely you want to plot your data and visually look for
stationarity issues.

▶ Also evaluate if there are reasons to assume a particular
structure.
▶ Are you using an established model form, from say another

paper?
▶ Are you fitting to a process that is fundamentally AR only or

AR + MA?



Box-Jenkins method

A. Model form selection

1. Evaluate stationarity
2. Selection of the differencing level (d) – to fix stationarity

problems
3. Selection of the AR level (p)
4. Selection of the MA level (q)

B. Parameter estimation

C. Model checking



Check the residuals

Residuals = difference between the expected (fitted) value of xt and
the data

There is no observation error in an ARMA model. The expected
value is the xt expected from data up to t − 1.

For example, the residual for an AR(2) model is yt − x̂t .

xt = ϕ1xt−1 + ϕ2xt−2 + wt

x̂t = ϕ1xt−1 + ϕ2xt−2



residuals() function in R

The residuals() function will return the residuals for fitted
models.
fit <- forecast::auto.arima(anchovy)
residuals(fit)

## Time Series:
## Start = 1
## End = 26
## Frequency = 1
## [1] 0.008549039 -0.249032308 -0.004098059 0.281393071
## [5] -0.006015194 0.043859685 -0.123711732 -0.137125900
## [9] 0.142098844 -0.011246624 -0.328608840 -0.358310373
## [13] 0.198311913 -0.157824727 -0.028321380 0.092732171
## [17] 0.136826748 -0.078995675 0.245238274 -0.046755189
## [21] 0.222279848 0.153983301 0.093036353 0.307250228
## [25] -0.103051063 -0.383026466



fitted() function in R

The fitted() function will return the expected values. Remember
that for a ARMA model, these are the expected values conditioned
on the data up to time t − 1.
fitted(fit)

## Time Series:
## Start = 1
## End = 26
## Frequency = 1
## [1] 8.594675 8.606878 8.550151 8.610325 8.762619 8.814978
## [7] 8.883569 8.896418 8.905111 9.006436 9.056857 9.002066
## [13] 8.937456 9.057378 9.059236 9.104026 9.188947 9.288486
## [19] 9.316477 9.451955 9.490634 9.618501 9.723727 9.808749
## [25] 9.964784 9.984801

The residuals are data minus fitted.



Standard residuals tests

▶ Plot the residuals. They should look roughly like white noise.
▶ Look at the ACF of the residuals. They should be uncorrelated.
▶ Look at the histogram. They should be normally distributed (if

that is your error assumption).



Residuals check with forecast package
forecast::checkresiduals(fit)
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Test for autocorrelation

The standard test for autocorrelated time-series residuals is the
Ljung-Box test. The null hypothesis for this test is no
autocorrelation. We do not want to reject the null.
forecast::checkresiduals(fit, plot=FALSE)

##
## Ljung-Box test
##
## data: Residuals from ARIMA(0,1,1) with drift
## Q* = 1.0902, df = 4, p-value = 0.8958
##
## Model df: 1. Total lags used: 5

p > 0.05 would be interpreted as not enough statistical evidence to
reject the null hypothesis.


