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ARIMA

I = Integrated: Refers to differencing the time series to make  which is
stationary (i.e., removing trends).

A = AutoRegressive (AR): An additive weighted sum of past values to model
the current value.

MA = Moving Average: Uses an additive weighted sum past forecast errors
to model the current value.

· 𝑧𝑡

·

·

= +⋯ + +𝑧𝑡 𝜙1𝑧𝑡−1 𝜙𝑝𝑧𝑡−𝑝 𝜖𝑡

= 𝜃 +⋯ +𝜖𝑡 𝑒𝑡 𝜃𝑞𝑒𝑡−𝑞
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Box-Jenkins method

A. ARIMA(p,d,q) Model selection

B. Parameter estimation

C. Model checking

1. Evaluate stationarity

2. Fix stationarity problems - Select the differencing level (d)

3. Selection of the AR level (p)

4. Selection of the MA level (q)

1. Test model residuals for distribution assumptions (e.g. Normality)

2. Test model residuals for temporal correlation
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Notes

For ARIMA models, much of the Box-Jenkins method will be automated
with the forecast package functions, which you will use in the lab.

For this lecture, I have removed much of the mathematical background.
See ATSA 2023 lectures for more of that background.

·

·

4/40

https://atsa-es.github.io/atsa2023/


Stationarity

Stationarity means ‘not changing in time’ in the context of time-series
models. Typically we test the trend and variance, however more generally all
statistical properties of a time-series is time-constant if the time series is
‘stationary’.
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Example

Many ARMA models exhibit stationarity. White noise is one type:

= , ∼ 𝑁(0, 𝜎)𝑥𝑡 𝑒𝑡 𝑒𝑡
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Example

An AR-1 process with 

is also stationary.

−1 < 𝜙 < 1

= 𝜙 +𝑥𝑡 𝑥𝑡−1 𝑒𝑡
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Stationarity around non-zero mean

We can also have stationarity around a non-zero level or around a linear
trend.
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Non-stationarity

One of the most common forms of non-stationarity that is tested for is that
the process is a random walk , aka a ‘unit root’ process. A test
for an underlying random walk is called a ‘unit root’ test.

= +𝑥𝑡 𝑥𝑡−1 𝑒𝑡
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Random walk with trends

There are two classic types of trends: a linear trend and an exponential trend.
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Testing for stationarity

Why is evaluating stationarity important?

For this lecture, we are using the Box-Jenkins method for forecasting. Step 1
is to create a transformed stationary time series that we can fit an ARMA
model to (Wold Decomposition).

In a real data analysis, there are other reasons:

Many standard algorithms for fitting ARMA models assume stationarity.

Many AR models are stationary. If your data are not, you are fitting a
model that is fundamentally inconsistent with your data.

Many processes in environmental science are fundamentally random
walks, i.e. non-stationary, e.g. movement, population growth, genetic drift.

·

·

·
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Testing for stationarity

We will discuss three common approaches to evaluating stationarity:

Visual test

(Augmented) Dickey-Fuller test

KPSS test

·

·

·
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Visual test

The visual test is simply looking at a plot of the data versus time. Look for

Change in the level over time. Is the time series increasing or decreasing?
Does it appear to cycle?

Change in the variance over time. Do deviations away from the mean
change over time, increase or decrease?

·

·
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Anchovy and sardine catch in Greek waters
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Classic stationarity tests

Dickey-Fuller (ADF) vs. KPSS Tests

Aspect Dickey-Fuller (ADF) Test KPSS Test

Purpose
Tests for the presence of a unit root (non-
stationarity).

Tests for stationarity (null hypothesis is
stationary).

Null Hypothesis
(H₀) Series has a unit root (non-stationary). Series is stationary.

Alternative
Hypothesis (H₁) Series is stationary. Series is not stationary (has a unit root).

Test Result
Interpretation

Reject H₀ → Stationary (no unit root).
Reject H₀ → Non-stationary (has a unit
root).

Type of Test Uses a regression model to check for unit
root.

Compares the series’ behavior against a
stationary process.
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Testing with the forecast package

ndiffs() uses a unit root test to determine the number of differences
required for time series x to be made stationary. If test=“kpss”, the KPSS test
is used with the null hypothesis that x has a stationary root against a unit-
root alternative. Then the test returns the least number of differences
required to pass the test at the level alpha.

library(forecast)
ndiffs(WWWusage)
ndiffs(diff(log(AirPassengers), 12))
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Fix stationarity problems

In this lecture we will use differencing, the I in ARIMA model refers to
differencing.
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Differencing the data to make the mean
stationary

Differencing means to create a new time series . First order
differencing means you do this once (so ) and second order differencing
means you do this twice (so ).

The diff() function takes the first difference:

The second difference is the first difference of the first difference.

= −𝑧𝑡 𝑥𝑡 𝑥𝑡−1
𝑧𝑡

−𝑧𝑡 𝑧𝑡−1

x <- diff(c(1,2,4,7,11))
x

## [1] 1 2 3 4

diff(x)

## [1] 1 1 1
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Anchovy catch first differenced

Here is a plot of the anchovy data and its first difference.
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forecast::ndiffs() function

You can use the ndiffs() function in the forecast package to find the
number of differences needed.

The test indicates that one difference ( ) will lead to stationarity.

forecast::ndiffs(anchovyts, test="kpss")

## [1] 1

forecast::ndiffs(anchovyts, test="adf")

## [1] 1

−𝑥𝑡 𝑥𝑡−1
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Summary

Test stationarity before you fit a ARMA model.

Visual test: Do the data fluctuate around a level or do they have a trend or
look like a random walk?

Yes or maybe? -> Apply a “unit root” test. ADF or KPSS

No or fails the unit root test? -> Apply differencing and re-test.

Still not passing? -> Try a second difference or you may need to transform the
data (if say it has an exponential trend).

Still not passing? -> ARMA model might not be the best choice. Or you may
need to use an adhoc detrend.

These steps are automated by the forecast package
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Box-Jenkins method

A. Model form selection

B. Parameter estimation

C. Model checking

1. Evaluate stationarity

2. Selection of the differencing level (d) – to fix stationarity problems

3. Selection of the AR level (p)

4. Selection of the MA level (q)
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ACF and PACF

On Tuesday, you learned how to use ACF and PACF to visually infer the AR
and MA lags for a ARMA model. Here is the ACF and PACF of the differenced
anchovy time series.
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Formal model selection

This weighs how well the model fits against how many parameters your
model has. Basic idea is to fit (many) models and use AIC, AICc or BIC to
select. Smallest AIC or BIC is best model.

The auto.arima() function in the forecast package in R allows you to easily
do this and will also select the level of differencing (via ADF or KPSS tests).

Type ?forecast::auto.arima to see a full description of the function.

forecast::auto.arima(anchovy)
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Model selection with auto.arima()

The output indicates that the ‘best’ model is a MA(1) with first difference.
“with drift” means that the mean of the anchovy first differences (the data for
the model) is not zero.

forecast::auto.arima(anchovy)

## Series: anchovy 
## ARIMA(0,1,1) with drift 
## 
## Coefficients:
##           ma1   drift
##       -0.6685  0.0542
## s.e.   0.1977  0.0142
## 
## sigma^2 = 0.04037:  log likelihood = 5.39
## AIC=-4.79   AICc=-3.65   BIC=-1.13
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Trace = TRUE

By default, step-wise selection is used for the model search. You can see
what models that auto.arima() tried using trace=TRUE. The models are
selected on AICc by default.

forecast::auto.arima(anchovy, trace=TRUE)

## 
##  ARIMA(2,1,2) with drift         : 4.765453
##  ARIMA(0,1,0) with drift         : 0.01359746
##  ARIMA(1,1,0) with drift         : -0.1662165
##  ARIMA(0,1,1) with drift         : -3.647076
##  ARIMA(0,1,0)                    : -1.554413
##  ARIMA(1,1,1) with drift         : Inf
##  ARIMA(0,1,2) with drift         : Inf
##  ARIMA(1,1,2) with drift         : 1.653078
##  ARIMA(0,1,1)                    : -1.372929
## 
##  Best model: ARIMA(0,1,1) with drift

## Series: anchovy 
## ARIMA(0,1,1) with drift 
## 
## C ffi i t
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Selected model

First difference of the data is MA(1) with drift

aka

“Today’s value is yesterday’s value plus a constant, and influenced by
yesterday’s shocks/errors”

 is white noise.

− = 𝜇 + +𝑥𝑡 𝑥𝑡−1 𝑤𝑡 𝜃1𝑤𝑡−1

= + 𝜇 + +𝑥𝑡 𝑥𝑡−1 𝑤𝑡 𝜃1𝑤𝑡−1

𝑤𝑡
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Fit to simulated AR(2) data

The ‘best-fit’ model is AR(1) not AR(2).

set.seed(100)
a1 = arima.sim(n=100, model=list(ar=c(.8,.1)))
forecast::auto.arima(a1, seasonal=FALSE, max.d=0)

## Series: a1 
## ARIMA(1,0,0) with non-zero mean 
## 
## Coefficients:
##          ar1     mean
##       0.6928  -0.5343
## s.e.  0.0732   0.2774
## 
## sigma^2 = 0.7703:  log likelihood = -128.16
## AIC=262.33   AICc=262.58   BIC=270.14
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How often is the ‘true’ model is chosen

Let’s run 100 simulations of a AR(2) process and record the best fits.

save.fits = rep(NA,100)
for(i in 1:100){
  a1 = arima.sim(n=100, model=list(ar=c(.8,.1)))
  fit = forecast::auto.arima(a1, seasonal=FALSE, max.d=0, max.q=0)
  save.fits[i] = paste0(fit$arma[1], "-", fit$arma[2])
}
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Overwhelmingly the correct type of model (AR) is selected, but usually a
simpler model of AR(1) is chosen over AR(2).

Table heading is AR order - MA order.

table(save.fits)

## save.fits
## 1-0 2-0 3-0 4-0 
##  74  20   5   1
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stepwise=FALSE

By default, step-wise selection is used and an approximation is used for the
models tried in the model selection step. For a final model selection, you
should turn these off to fit a large set of models.

forecast::auto.arima(anchovy, stepwise=FALSE, 
                     approximation=FALSE)

## Series: anchovy 
## ARIMA(0,1,1) with drift 
## 
## Coefficients:
##           ma1   drift
##       -0.6685  0.0542
## s.e.   0.1977  0.0142
## 
## sigma^2 = 0.04037:  log likelihood = 5.39
## AIC=-4.79   AICc=-3.65   BIC=-1.13
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Summary: model selection and fitting

Once you have dealt with stationarity, you need to determine the order of
the model: the AR part and the MA part.

Also consider if there are reasons to assume a particular structure.

·

·

Are you using an established model form, from say another paper?

Are you fitting to a process that is fundamentally AR only or AR + MA?

-

-
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Box-Jenkins method

A. Model form selection

B. Parameter estimation

C. Model checking

1. Evaluate stationarity

2. Selection of the differencing level (d) – to fix stationarity problems

3. Selection of the AR level (p)

4. Selection of the MA level (q)
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Check the residuals

Residuals = difference between the expected (fitted) value of  and the data

There is no observation error in an ARMA model. The expected value is the
 expected from data up to .

For example, the residual for an AR(2) model is .

𝑥𝑡

𝑥𝑡 𝑡 − 1

−𝑦𝑡 𝑥 ̂𝑡

= + +𝑥𝑡 𝜙1𝑥𝑡−1 𝜙2𝑥𝑡−2 𝑤𝑡

= +𝑥 ̂𝑡 𝜙1𝑥𝑡−1 𝜙2𝑥𝑡−2
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residuals() function in R

The residuals() function will return the residuals for fitted models.

fit <- forecast::auto.arima(anchovy)
residuals(fit)

## Time Series:
## Start = 1 
## End = 26 
## Frequency = 1 
##  [1]  0.008549039 -0.249032308 -0.004098059  0.281393071
##  [5] -0.006015194  0.043859685 -0.123711732 -0.137125900
##  [9]  0.142098844 -0.011246624 -0.328608840 -0.358310373
## [13]  0.198311913 -0.157824727 -0.028321380  0.092732171
## [17]  0.136826748 -0.078995675  0.245238274 -0.046755189
## [21]  0.222279848  0.153983301  0.093036353  0.307250228
## [25] -0.103051063 -0.383026466
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fitted() function in R

The fitted() function will return the expected values. Remember that for a
ARMA model, these are the expected values conditioned on the data up to
time .

The residuals are data minus fitted.

𝑡 − 1

fitted(fit)

## Time Series:
## Start = 1 
## End = 26 
## Frequency = 1 
##  [1] 8.594675 8.606878 8.550151 8.610325 8.762619 8.814978
##  [7] 8.883569 8.896418 8.905111 9.006436 9.056857 9.002066
## [13] 8.937456 9.057378 9.059236 9.104026 9.188947 9.288486
## [19] 9.316477 9.451955 9.490634 9.618501 9.723727 9.808749
## [25] 9.964784 9.984801
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Standard residuals tests

Plot the residuals. They should look roughly like white noise.

Look at the ACF of the residuals. They should be uncorrelated.

Look at the histogram. They should be normally distributed (if that is your
error assumption).

·

·

·
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Residuals check with forecast package

forecast::checkresiduals(fit)
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Test for autocorrelation

The standard test for autocorrelated time-series residuals is the Ljung-Box
test. The null hypothesis for this test is no autocorrelation. We do not want
to reject the null.

 would be interpreted as not enough statistical evidence to reject
the null hypothesis.

forecast::checkresiduals(fit, plot=FALSE)

## 
##  Ljung-Box test
## 
## data:  Residuals from ARIMA(0,1,1) with drift
## Q* = 1.0902, df = 4, p-value = 0.8958
## 
## Model df: 1.   Total lags used: 5

𝑝 > 0.05
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That concludes Fitting and Selecting
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