Intro to time series analysis

FISH 550 – Applied Time Series Analysis

Mark Scheuerell 28 March 2023

Topics for today

Characteristics of time series (ts)

- \cdot What is a ts?
- Classifying ts
- Trends
- Seasonality (periodicity)

Classical decomposition

What is a time series?

A set of observations taken sequentially in time

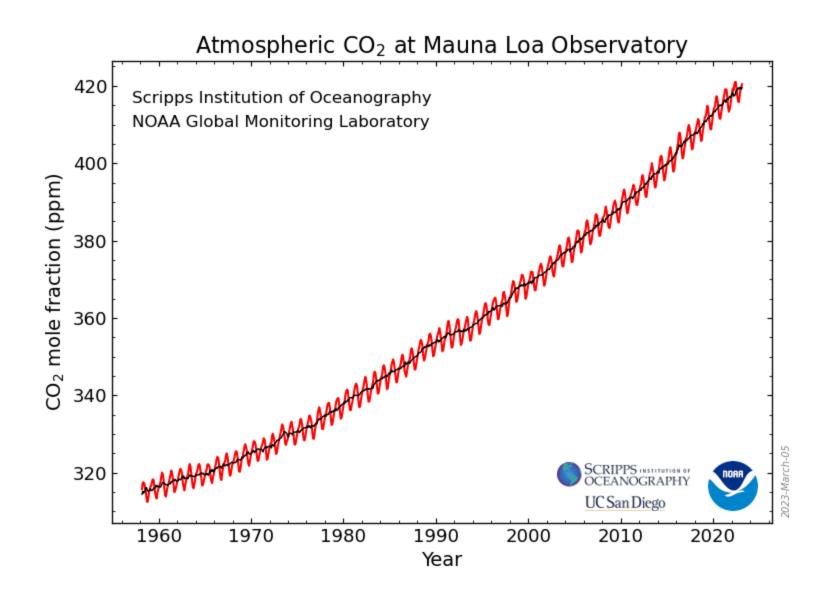
What is a time series?

A ts can be represented as a set

$$\{x_1, x_2, x_3, \ldots, x_n\}$$

For example,

{10, 31, 27, 42, 53, 15}



By some *index set*

Interval across real time; x(t)

• begin/end: $t \in [1.1, 2.5]$

By some *index set*

Discrete time; x_t

- Equally spaced: $t = \{1, 2, 3, 4, 5\}$
- Equally spaced w/ missing value: $t = \{1, 2, 4, 5, 6\}$
- Unequally spaced: $t = \{2, 3, 4, 6, 9\}$

By the underlying process

Discrete (eg, total # of fish caught per trawl)

Continuous (eg, salinity, temperature)

By the number of values recorded

Univariate/scalar (eg, total # of fish caught)

Multivariate/vector (eg, # of each spp of fish caught)

By the type of values recorded

```
Integer (eg, # of fish in 5 min trawl = 2413)
```

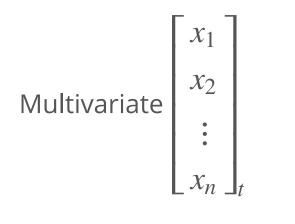
Rational (eg, fraction of unclipped fish = 47/951)

```
Real (eg, fish mass = 10.2 g)
```

```
Complex (eg, cos(2\pi 2.43) + i sin(2\pi 2.43))
```

We will focus on integers & real-values in discrete time

Univariate (x_t)



Time series objects have a special designation in R: ts

ts(data,

start, end,
frequency

)

Time series objects have a special designation in R: ts

ts(data,
 start, end,
 frequency
)

data should be a vector (univariate)

or a data frame or matrix (multivariate)

Time series objects have a special designation in R: ts

ts(data,
 start, end,
 frequency
)

start and end give the first and last time indices

For monthly series, specify them as c(year, month)

Time series objects have a special designation in R: ts

ts(data,
 start, end,
 frequency
)

frequency is the number of observations per unit time

```
For annual series, frequency = 1
```

```
For monthly series, frequency = 12
```

Time series objects have a special designation in R: ts

ts(data, start, end, **deltat**)

deltat is the fraction of the sampling period

```
For annual series, deltat = 1
```

```
For monthly series, deltat = 1/12
```

set.seed(507)

There is a designated function for plotting ts objects: plot.ts()

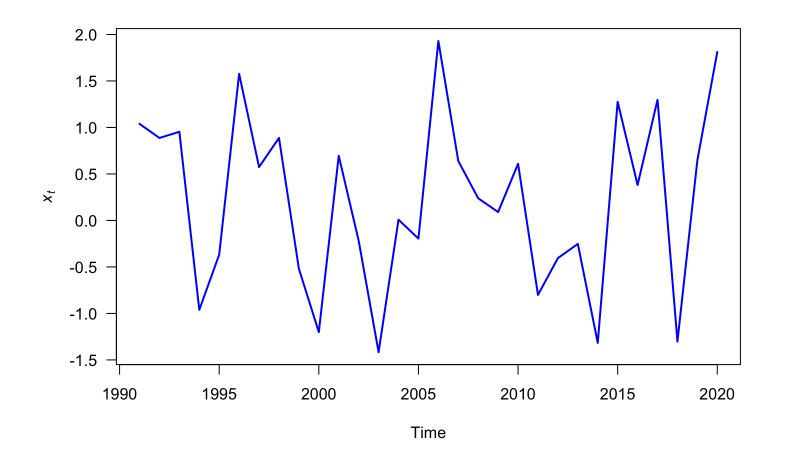
plot.ts(ts_object)



Time

We can specify some additional arguments to plot.ts

plot.ts(dat_yr, ylab = expression(italic(x[t])), las = 1, col = "blue", lwd = 2)



Analysis of time series

Statistical analyses of time series

Most statistical analyses are concerned with estimating properties of a population from a sample

For example, we use fish caught in a seine to infer the mean size of fish in a lake

Statistical analyses of time series

Time series analysis, however, presents a different situation:

• Although we could vary the *length* of an observed time series, it is often impossible to make multiple observations at a *given* point in time

Statistical analyses of time series

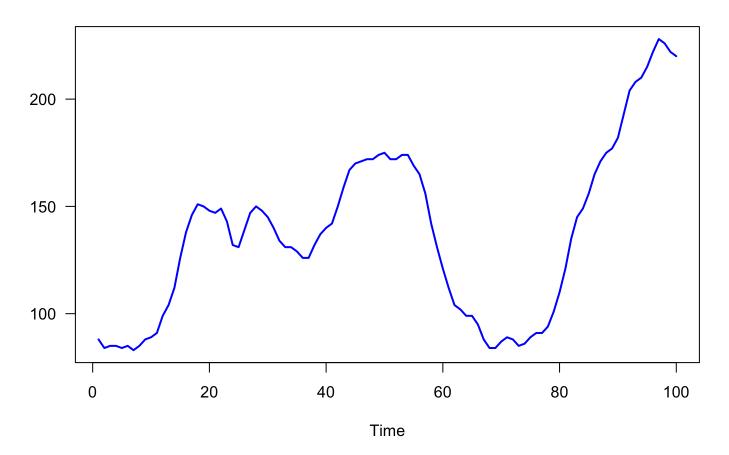
Time series analysis, however, presents a different situation:

• Although we could vary the *length* of an observed time series, it is often impossible to make multiple observations at a *given* point in time

For example, one can't observe today's closing price of Microsoft stock more than once

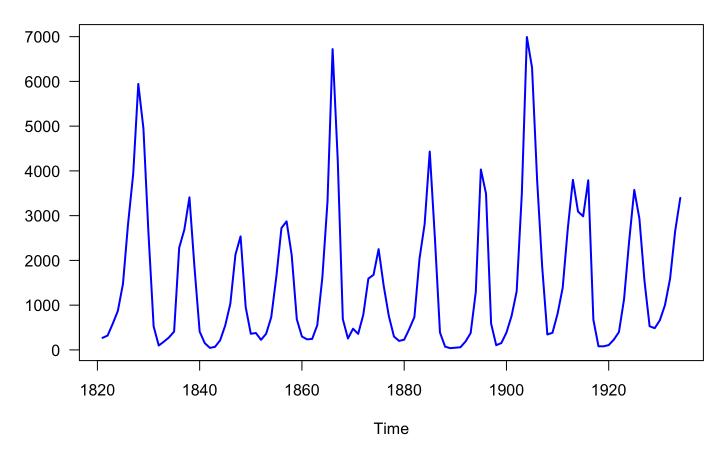
Thus, conventional statistical procedures, based on large sample estimates, are inappropriate

Descriptions of time series



Number of users connected to the internet

Descriptions of time series

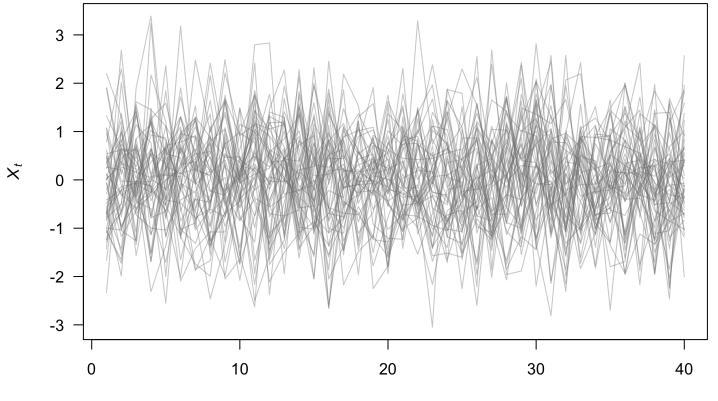


Number of lynx trapped in Canada from 1821-1934

What is a time series model?

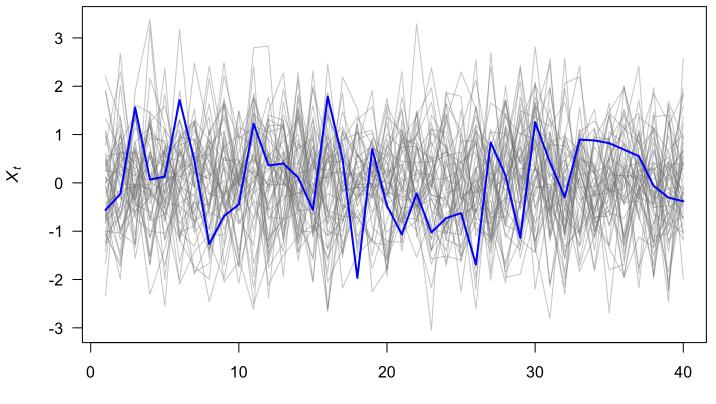
A *time series model* for $\{x_t\}$ is a specification of the *joint distributions* of a sequence of *random variables* $\{X_t\}$, of which $\{x_t\}$ is thought to be a realization

Joint distributions of random variables



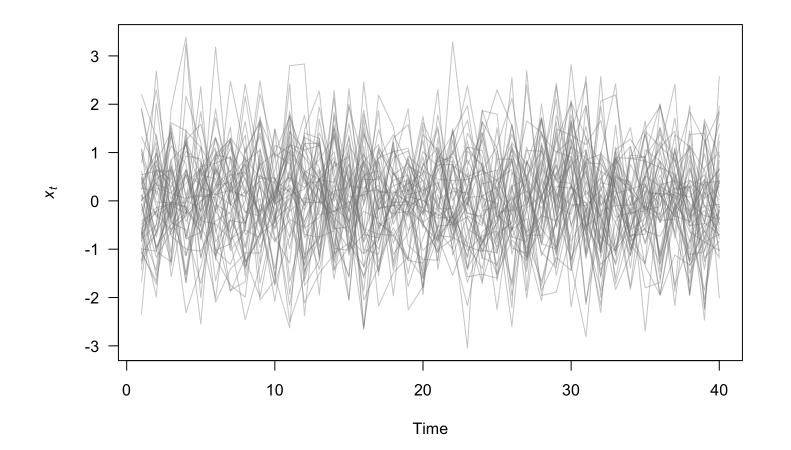
Time

We have one realization



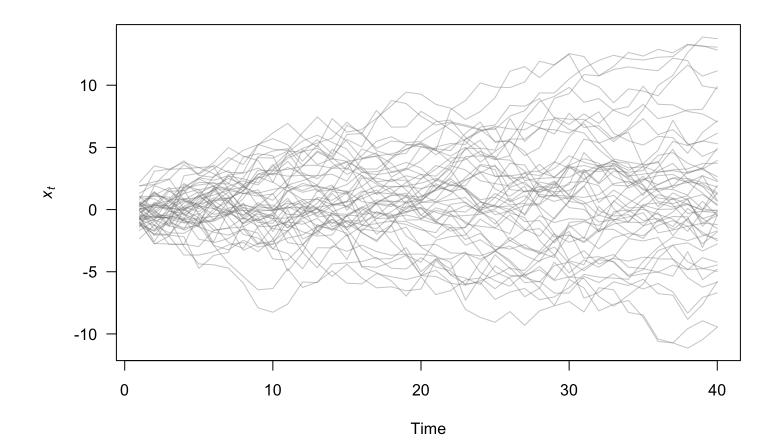
Time

Some simple time series models



White noise: $x_t \sim N(0, 1)$

Some simple time series models



Random walk: $x_t = x_{t-1} + w_t$, with $w_t \sim N(0, 1)$

Model time series $\{x_t\}$ as a combination of

- 1. trend (m_t)
- 2. seasonal component (S_t)
- 3. remainder (e_t)
- $x_t = m_t + s_t + e_t$

1. The trend (m_t)

We need a way to extract the so-called *signal* from the *noise*

One common method is via "linear filters"

Linear filters can be thought of as "smoothing" the data

1. The trend (m_t)

Linear filters typically take the form

$$\hat{m}_t = \sum_{i=-\infty}^{\infty} \lambda_i x_{t+1}$$

1. The trend (m_t)

For example, a moving average

$$\hat{m}_t = \sum_{i=-a}^{a} \frac{1}{2a+1} x_{t+i}$$

1. The trend (m_t)

For example, a moving average

$$\hat{m}_t = \sum_{i=-a}^{a} \frac{1}{2a+1} x_{t+i}$$

If a = 1, then

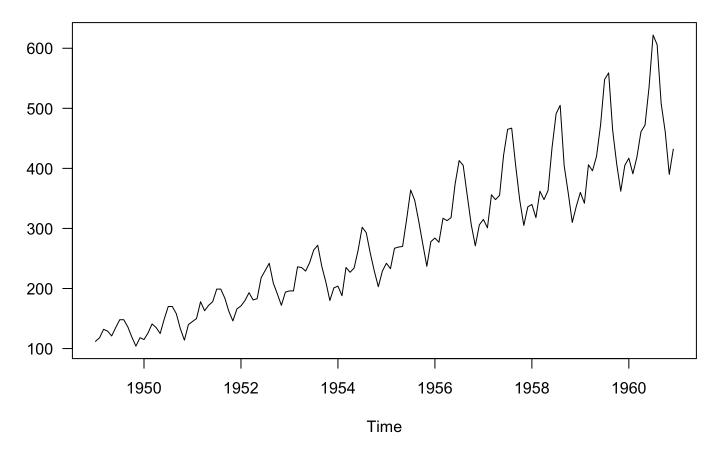
$$\hat{m}_t = \frac{1}{3}(x_{t-1} + x_t + x_{t+1})$$

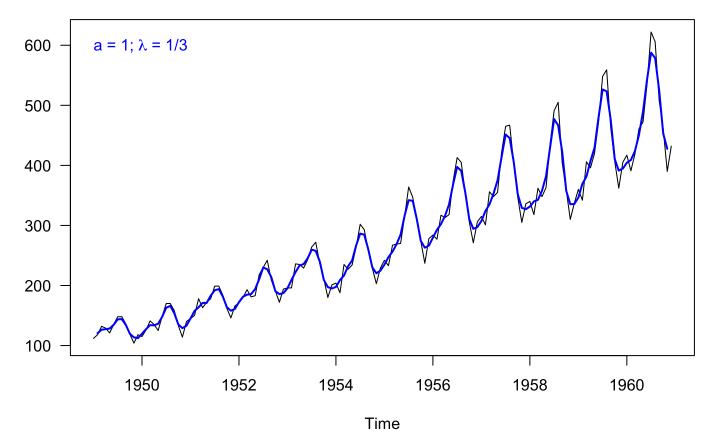
1. The trend (m_t)

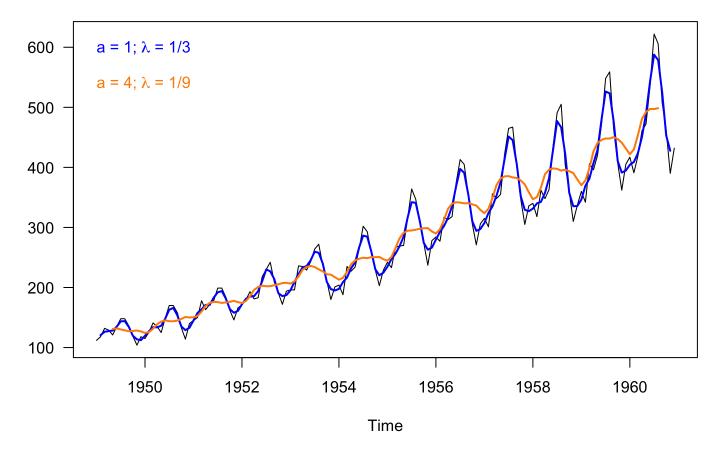
For example, a moving average

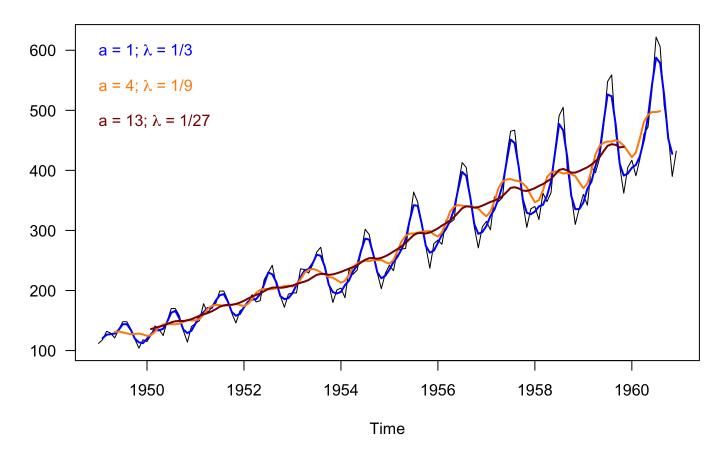
$$\hat{m}_t = \sum_{i=-a}^{a} \frac{1}{2a+1} x_{t+i}$$

As *a* increases, the estimated trend becomes more smooth





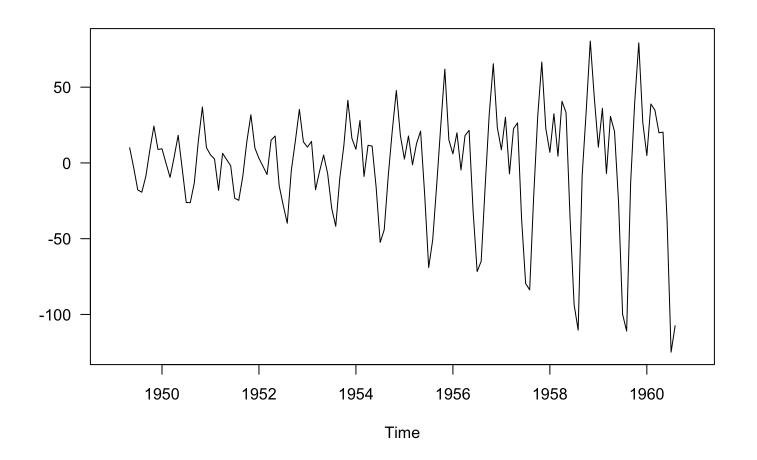




2. Seasonal effect (s_t)

Once we have an estimate of the trend \hat{m}_t , we can estimate \hat{s}_t simply by subtraction:

$$\hat{s}_t = x_t - \hat{m}_t$$



Seasonal effect (\hat{s}_t), assuming $\lambda = 1/9$

2. Seasonal effect (s_t)

But, \hat{s}_t really includes the remainder e_t as well

$$\hat{s}_t = x_t - \hat{m}_t$$
$$(s_t + e_t) = x_t - m_t$$

2. Seasonal effect (*s*_t)

So we need to estimate the *mean* seasonal effect as

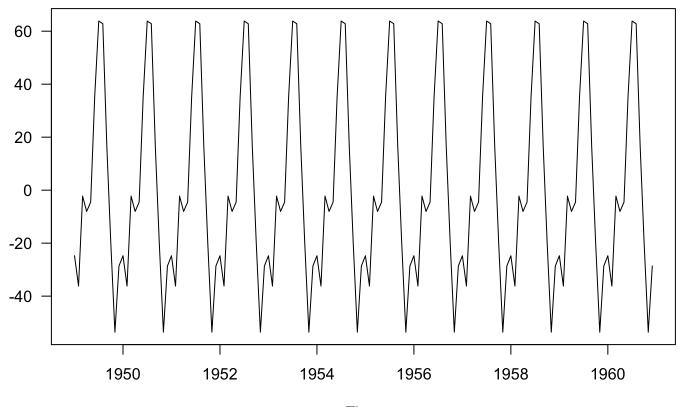
$$\hat{s}_{Jan} = \sum \frac{1}{(N/12)} \{s_1, s_{13}, s_{25}, \dots\}$$

$$\hat{s}_{Feb} = \sum \frac{1}{(N/12)} \{s_2, s_{14}, s_{26}, \dots\}$$

$$\vdots$$

$$\hat{s}_{Dec} = \sum \frac{1}{(N/12)} \{s_{12}, s_{24}, s_{36}, \dots\}$$

Mean seasonal effect (*s*_t)

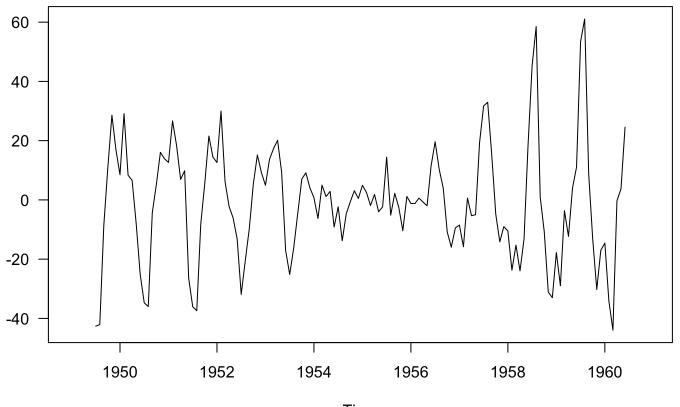


3. Remainder (e_t)

Now we can estimate e_t via subtraction:

$$\hat{e}_t = x_t - \hat{m}_t - \hat{s}_t$$

Remainder (e_t)

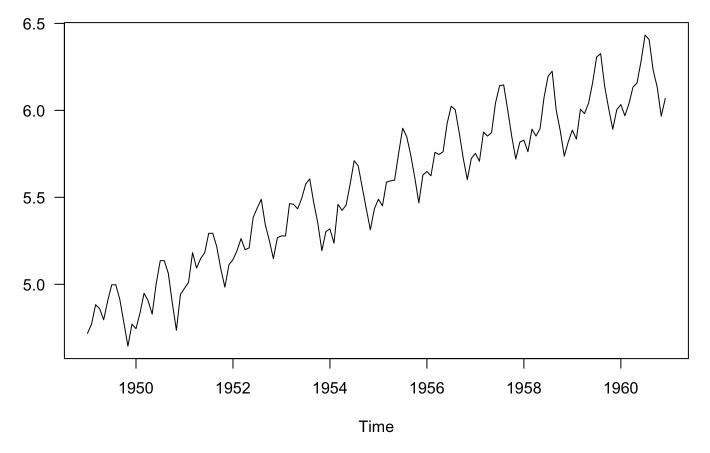


Let's try a different model

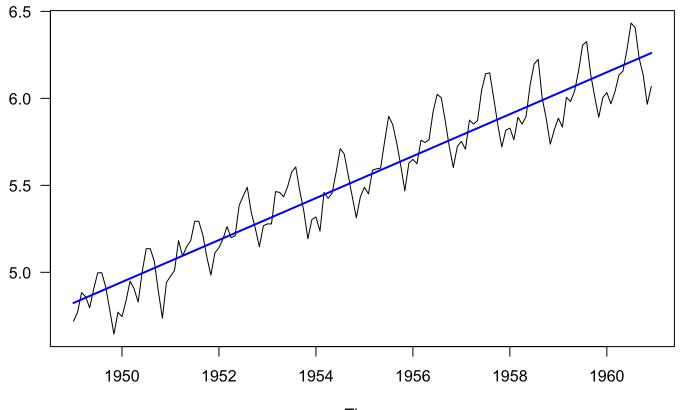
With some other assumptions

- 1. Log-transform data
- 2. Linear trend

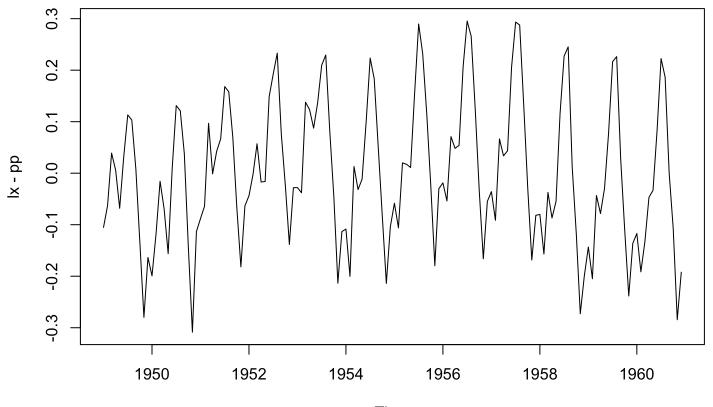
Log-transformed data



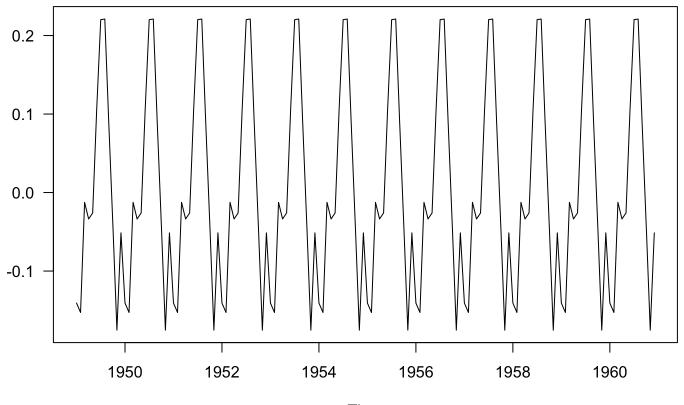
The trend (m_t)



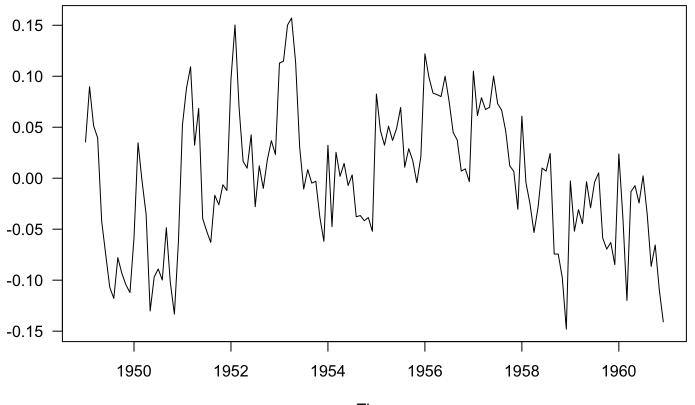
Seasonal effect (s_t) with error (e_t)



Mean seasonal effect (*s*_t)



Remainder (e_t)



Summary

Today's topics

Characteristics of time series (ts)

- \cdot What is a ts?
- Classifying ts
- Trends
- Seasonality (periodicity)

Classical decomposition