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ABSTRACT

Effective conservation and management of natural
resources requires accurate predictions of ecosystem
responses to future climate change, but environmental
science has largely failed to produce these reliable
forecasts. The future response of Pacific salmon (On-
corhynchus spp.) to a changing environment and con-
tinued anthropogenic disturbance is of particular
interest to the public because of their high economic,
social, and cultural value. While numerous retrospec-
tive analyses show a strong correlation between past
changes in the ocean environment and salmon pro-
duction within the north Pacific, these correlations
rarely make good predictions. Using a Bayesian time-
series model tomake successive 1-yr-ahead forecasts, we
predicted changes in the ocean survival of Snake River
spring/summer chinook salmon (O. tshawytscha) from
indices of coastal ocean upwelling with a high degree of
certainty (R2 ¼ 0.71). Furthermore, another formof the
dynamic times-seriesmodel that used all of the available
data indicated an even stronger coupling between
smolt-to-adult survival and ocean upwelling in the
spring and fall (R2 ¼ 0.96). This suggests that man-
agement policies directed at conserving this threatened
stock of salmon need to explicitly address the important
role of the ocean in driving future salmon survival.
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INTRODUCTION

The ability to forecast future effects of global change
on ecosystems and the services that they provide to

human society represents an emerging imperative for
environmental science (Clark et al., 2001). This
becomes more essential as climate change, alteration
of nutrient cycles, species introductions and extinc-
tions, the spread of disease, and pollution increasingly
threaten the natural resources on which we rely for
food, fiber, and freshwater (Carpenter, 2002). In
marine ecosystems, historical overfishing by humans
and changes in the ocean environment interacted to
drastically reduce invertebrate, fish, and marine
mammal populations around the globe (Jackson et al.,
2001). As we continue to heavily exploit fish stocks
(Pauly et al., 1998) while altering the earth’s ecosys-
tems (Vitousek et al., 1997), effective conservation
and management will require a forward-looking per-
spective that explicitly addresses the role of an
uncertain global environment.

Throughout their range, Pacific salmon (Onc-
orhynchus spp.) hold enormous social, economic, and
cultural value, and therefore society places paramount
importance on predicting the response of salmon
populations to future anthropogenic disturbances and
natural changes in the environment (Ruckelshaus
et al., 2002). Nevertheless, current predictions of the
response of salmon to future climate change are not
specific enough (Melack et al., 1997) to aid in the
development of management actions to ensure sus-
tainable fisheries, or even population existence. The
Columbia River of the northwest United States his-
torically produced the greatest runs of chinook salmon
(O. tshawytscha) in the world. By the 1990s however,
>90% declines in their abundance led to the listing of
five evolutionarily significant units under the Endan-
gered Species Act, two within the largest tributary, the
Snake River (Fig. 1). Much of the debate surrounding
the cause of their decline centers on the ‘4 Hs’: habitat
degradation, harvest, hydroelectric and other dams,
and hatchery production (Ruckelshaus et al., 2002),
but Snake River chinook salmon are not currently
exploited to the degree they once were (Schaller et al.,
1999). Recent analyses point to the 4 Hs as important
drivers of salmon declines in this region, but they also
identify the ocean as a source of unexplained variance
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(Kareiva et al., 2000; Deriso et al., 2001; Levin et al.,
2001; Wilson, 2003). While numerous retrospective
analyses show a strong correlation between past
changes in the ocean environment and salmon pro-
duction within this region (Mantua et al., 1997; Bea-
mish et al., 1999b; Hare et al., 1999; Levin et al.,
2001), these correlations rarely make good predictions
because they tend to break down over time without
any apparent cause (Nickelson, 1986; Gargett, 1997).

Here we explore the role of ocean-climate condi-
tions in predicting the marine survival of Snake River
spring/summer (SRSS) chinook salmon using extensive
time series of its smolt-to-adult survival rate (SAR).
Traditional quantitative approaches to fisheries man-
agement that rely solely on the numbers of spawning fish
to predict future returns have largely proven inade-
quate, as they typically ignore the other environmental
processes that affect salmon throughout their complex
life history (Botsford et al., 1997; Hare and Mantua,
2000). We adopted another approach using formal
time-series analyses to explicitly predict how a changing
ocean environment affects the marine survival of sal-
mon. We use seasonal changes in coastal upwelling of
the northeast Pacific to make successive 1-yr-ahead
forecasts of the SAR of SRSS chinook salmon and
compare those to the observed survival.

METHODS

Ocean-climate data

We chose the Pacific Coastal Upwelling Index (CUI),
otherwise known as the Bakun Index, as our measure

of ocean-climate conditions. Coastal upwelling is
thought to influence salmon during their ocean resi-
dence through bottom-up forcing of the marine food
web (Nickelson, 1986; Gargett, 1997), and has been
used by others to compare the ocean environment to
catches of Pacific salmon and Dungeness crab in this
region (Botsford and Lawrence, 2002). We obtained
the CUI from the National Marine Fisheries Service
Pacific Fisheries Environmental Lab (PFEL, http://
www.pfeg.noaa.gov, last accessed 1 July 2004). On a
monthly basis, PFEL generates indices of the intensity
of large-scale, wind-induced coastal upwelling at 15
standard locations along the west coast of North
America (each 3� of latitude from 21�N to 60�N).
Following Botsford and Lawrence (2002), we chose
the CUI for 45�N latitude 125�W longitude (Fig. 1) to
compare with ocean survival of chinook salmon from
the Columbia River Basin. This area of the north
Pacific represents a region that salmon from the
Columbia River move into after reaching the ocean
(Miller et al., 1983). Previous studies suggest that the
primary influence of the ocean on salmon survival
occurs within the first year that juveniles occupy
coastal waters (Pearcy, 1992). Rather than test all
12 months as predictor variables in the time-series
model, we first conducted a backward stepwise
regression using all 12 months as predictors of the
observed SAR. We used the year of ocean entry for
March through December, but shifted it 1 yr ahead for
January and February to reflect the salmon’s first
winter at sea. The multiple regression analysis identi-
fied April, September, and October as significant

Figure 1. Map of the study area showing
the Snake River basin (gray shading),
the four hydroelectric dams on the lower
Snake River used to enumerate juvenile
and adult salmon for estimating smolt-
to-adult survival (open symbols num-
bered 1–4), and the location of the
coastal upwelling index at 45�N 125�W.
The fifth hydroelectric dam shown on
the upper Snake River denotes Hells
Canyon Dam (solid symbol), a barrier to
anadromous fish.
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predictors (Table 1), and therefore we tested all eight
combinations of those 1–3 months as predictor varia-
bles in the time-series model (see below).

Salmon data

We used 37 yr of data on wild SRSS chinook salmon
to analyze the effect of ocean-climate conditions on
SAR. Because SRSS chinook salmon typically spend
1–3 yr in the ocean (but sometimes 4 yr), we calcu-
lated ocean survival as the percent of smolts migrating
to the ocean in a given year that returned as adults 1,
2, 3, and 4 yr later. We thus required estimates of
smolt abundance from outmigration years 1964 to
2000 and the corresponding adult returns for years
1965 through 2003. Counts of juvenile and adult
chinook salmon passing the uppermost dam on the
Snake River provide the basis for estimating smolt and
adult salmon abundance (Fig. 1). During the time
period examined here, the number of dams on the
lower Snake River increased from one to four (num-
bered 1–4 on Fig. 1), such that our fish counts come
from the following dams: Ice Harbor (pre-1969),
Lower Monumental (1969), Little Goose (1970–74),
and Lower Granite (1975–present). The actual
method of counting fish at each of these dams, how-
ever, did not change over time.

All of the smolt and adult data plus the SARs are
provided in Appendix A. We direct readers interested
in the details of these methods to Williams et al.
(2005). We used estimates of wild smolts for the per-
iod 1964–84 reported by Raymond (1988). We derived
estimates for wild smolts from 1993 to 2003 by
expanding the daily counts of wild smolts at Lower
Granite Dam (http://www.fpc.org, last accessed 1 July

2004), by the daily estimates of their detection prob-
ability at the dam as described by Sandford and Smith
(2002). For smolt years 1995–2003, we adjusted smolt
estimates by an estimated percentage of non-clipped
hatchery fish arriving at the dam not identified as of
hatchery origin. From 1985 to 1993 direct counts of
smolt abundance were not available and therefore we
based smolt abundance on a Beverton–Holt curve
(R2 ¼ 0.62, Zabel et al., 2005) generated from the
number of smolts from 1964 to 1984 and 1994 to 2003,
and the number of wild spawners passing the upper-
most Snake River dam 2 yr earlier corrected for any
in-river harvest above the dam (derived from Petrosky
et al., 2001; Williams et al., 2005).

The counts of adults include both wild and
hatchery fish and, for the period between 1964 and
1992, we used the estimated annual adult returns of
wild spring-summer chinook salmon to the upper dam
on the Snake River from Petrosky et al. (2001). From
1993 to 1996 we used the age-4 and age-5 wild adult
returns from Petrosky et al. (2001), but recalculated
the wild age-3 returns to account for fish enumerated
in Oregon rivers (R.C.P. Beamsderfer, Oregon
Department of Fish and Wildlife, Salem, OR, USA,
unpublished data). Fish counters assigned fish to either
a group with adipose fins (ostensibly wild fish) or a
group without adipose fins (known hatchery fish with
fins clipped as juveniles). For the period between 1997
and 2002, we derived the annual number of wild fish
by adjusting counts of non-adipose-fin-clipped adults
passing the counting window at the uppermost Snake
River dam by the estimated proportion of non-clipped
hatchery fish in the return (fish with an adipose fin,
but possibly with other clipped fins). We then sub-
tracted the corrected hatchery count from the total
adult return to derive the wild fish estimate.

For the period between 1964 and 1999, we used
age-class distributions calculated from age-of-return
data in Petrosky et al. (2001) to assign fish in a return
year to the year in which they migrated as smolts to
the ocean. Beginning in 1997, we estimated age-class
data based on returns of adults that were implanted
with Passive Integrated Transponder (PIT) tags as
juveniles (for details see Achord et al., 1996). Finally,
to account for Columbia River harvest rates that var-
ied between 0 and 40%, we expanded adult returns to
the uppermost Snake River dam for the period
between 1964 and 1999 based on estimated Columbia
River harvest rates by Petrosky et al. (2001). We
expanded adult returns for 2000–03 based on unpub-
lished harvest rates (Peter Dygert, NOAA Fisheries,
Seattle, Washington, personal communication). As we
do not yet have complete returns of adult salmon from

Table 1. Results of the backward-stepwise regression ana-
lysis to identify appropriate months of upwelling to use as
predictor variables for the survival of wild Snake River
spring-summer chinook salmon in the time-series model.
Results are based on N ¼ 37 yr of data (1964–2000) with an
overall model fit of R2 ¼ 0.39.

Source SS df MS F P-value

Regression 30.7 3 10.2 6.92 <0.001
Residual 48.8 33 1.48

Total 79.5 36

Effect Coefficient SE t P-value

Intercept 0.776 0.296 2.62 0.013
April 0.016 0.0091 1.80 0.081
September 0.027 0.0100 2.68 0.011
October )0.027 0.0112 )2.44 0.020
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the 2001 and 2002 outmigrations, we made prelimin-
ary estimates of the SAR for 2001 based on expansions
of the age-3 and age-4 returns and for 2002 based on
expansions of the age-3 adults, using the average age-
composition from the 1964–2000 outmigrations.

Time-series analyses

We modeled the effect of ocean-climate conditions on
salmon survival using a class of Bayesian time-series
models known as dynamic linear models (DLMs), a
form of the more general Kalman filter (Pole et al.,
1994). This technique has been applied effectively to
ecological data, and the methodology has been des-
cribed in detail elsewhere (Lamon et al., 1998;
Scheuerell et al., 2002), so we only describe it briefly
here. At each time step t the observed response vari-
able (Yt, a scalar) is sequentially fitted to the 1 · m
vector of predictor variables (Xt), with the m · 1
regression parameter vector (ht) plus an error term (mt,
a scalar) according to the observation equation

Yt ¼ Xtht þ mt mt � N½0;Vt�: ð1Þ
The observation errors mt have a variance Vt that is

time dependent and is usually not known well enough
to approximate it with a fixed value. Therefore, as the
analysis proceeds through time, Vt is estimated from all
of the prior data. The discounting scheme described
below also applies to Vt. The size of m equals the total
number of parameters used in forecasting (i.e. any
level, slope, and regression parameters).

The DLM makes use of changes in the parameter
set over time through a system equation. Using prior
information from Bayesian learning, the m · 1 vector
of regression parameters (ht) evolves through time
according to the first-order Markov process

ht ¼ Ght�1 þ xt xt � N½0;Wt�: ð2Þ

The m · m system evolution matrix G dictates how
the parameters change systematically through time
while the m · 1 variance vector xt describes the
stochastic change in each of the parameter estimates
(ht) over time. In this case, G is simply the identity
matrix, but could take a more complex form in other
ecological applications. The system variance matrix
(Wt) has the variance in xt along the diagonal and
zeros elsewhere. Wt is determined by the component
discount factors applied to the posterior covariance
matrix of the previous time step (Pole et al., 1994).

One-year-ahead forecasts are generated at each
time step, and the parameters are updated as new
information becomes incorporated into the model.
Through the use of discounting, priors are given

weights that determine how influential the prior data
are when updating the parameter estimates. These
discounts essentially represent the rate of exponential
decay of useful information such that when the dis-
count is 1 (its maximum value), all of the prior
information is retained, whereas a discount near 0
means no prior information is used at all. In general,
the lower the discount value, the faster a parameter
can change through time, but at the cost of decreased
precision of the estimate. We selected the discounts by
varying them systematically and then minimizing the
negative log-likelihood of the overall model. Our final
discounts were 0.9, 0.95, and 0.9 for the trend,
regression, and variance blocks, respectively.

Assessing the likelihood of the observed data given
a particular model is the straightforward case using
normally distributed errors as defined by Hilborn and
Mangel (1997), where the negative log-likelihood (L)
for the forecast model is given by

L ¼ n
1

2
logð2pÞ þ lnð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VtjDt�1

p
Þ

� �

þ
Xn

t¼1

ðYt � XthtjDt�1Þ2

2ðVtjDt�1Þ
; ð3Þ

where the forecast variance (Vt) depends on the data
only through the previous time step (Dt)1). By using
all of the available data including the observation in
the current year (Dt), we can derive the best statistical
fit of the model to the observed time series. In this
case, the estimates of both the parameter vector
(ht|Dt) and the observation variance (Vt|Dt) benefit
from the increased knowledge gained by observing the
current data point.

We used several metrics for assessing the perform-
ance of our time-series models for predicting the SAR
of SRSS chinook salmon. First, we ranked all com-
peting models according to their posterior negative
log-likelihood (L), such that the lowest negative log-
likelihood (Lmin) was the best. Next, we compared
alternative models through the use of cumulative
Bayes factors (H), which essentially represent the odds
of one model in comparison with another (Jeffries,
1961; Kass and Raftery, 1995; Lamon et al., 1998). We
did this for two cases: to compare any specific climate
model to its reference model (Href,i) and to compare
the best overall model to all others (Hmin,i). Because
we used the negative log-likelihood, the Bayes factor
for the first case becomes the difference in log-likeli-
hood between the reference model (Lref) and any other
model (Li),

Href;i ¼ Lref � Li; ð4aÞ
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or for the second case, the overall best model (Lmin)
and any other model (Li):

Hmin;i ¼ Lmin � Li: ð4bÞ

According to Kass and Raftery (1995), when 2Href,i

is 0 to 2, the evidence favoring model i over its ref-
erence model is ‘not worth more than a bare mention’;
2–6 indicates ‘positive’, 6–10 offers ‘strong’, and >10
provides ‘very strong’ evidence for the model over its
reference. The criteria are the same for 2Hmin,i, but
with opposite sign, effectively indicating the ‘weight of
evidence’ against the lower ranked model compared to
the best overall model.

RESULTS

The magnitude of the CUI showed considerable
variation over the duration of our study (Fig. 2).
During April, the CUI was generally positive until
1975, when it remained near zero with the exception
of a few strong downwelling years in 1993 and 1996
(Fig. 2a). During September, we observed predomin-
antly positive CUI values (upwelling), with partic-
ularly strong upwelling in 1965 and after 1990
(Fig. 2b). In October, the CUI indicated strong
downwelling in the late 1960s, but the intensity
weakened through the mid 1980s until it fluctuated
around zero for the remainder of the time series
(Fig. 2c).

We observed a dramatic decrease in the SAR of
wild SRSS chinook salmon during the late 1960s and
early 1970s (Fig. 3), followed by a relatively flat period
until the 1992 and 1993 outmigrations, when we ob-
served the lowest SAR on record. Beginning with the
1994 outmigration however, the survival of salmon in
the ocean started to climb again through 1999, when
we observed SARs near the highest on record. The
preliminary estimates of SAR for the 2001 and 2002
outmigrations also suggest continued high marine
survival near 4% (Fig. 3).

The overall best model for predicting SAR inclu-
ded a linear trend term plus all 3 months (April,
September, October) of the CUI (Table 2). Of the 14
upwelling-related models that we examined, 12 of
them performed significantly better than their
respective reference models based on an autocorre-
lated random walk. In general, models including the
October CUI performed better than those with the
other months. Similarly, models incorporating a linear
trend also tended to predict SAR better than those
without a trend term. All of the models met the
necessary condition of no serial autocorrelation of the
residuals.

The forecasts of the top-ranked CUI model inclu-
ding all 3 months matched observed survival rates
reasonably well over the duration of the time series
(R2 ¼ 0.71) and, with few exceptions, the observed
data fell within the 90% uncertainty limits of the
model forecasts (Fig. 3a). The wider prediction limits
surrounding some of the forecasts reflected greater
model uncertainty resulting from relatively poor pre-
dictions in prior years; the prediction errors decreased
in magnitude as more data became incorporated into
the analysis. However, the forecasting model only re-
lies on prior data up to, but not including, the obser-
vation in the current year. When we fit the time-series
model using all data up to, and including, the obser-
vation in the current year (Fig. 3b), we found a much
better fit (R2 ¼ 0.96). This so-called ‘online’ fit
essentially represents our best statistical description of
the temporal dynamics in SAR.

Figure 2. Time series of the Pacific coastal upwelling index
calculated for (a) April, (b) September, and (c) October
from 1964 to 2003 at 45�N 125�W.
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DISCUSSION

Interannual variation in environmental indices is
usually quite high, and therefore, analyses of ocean-
climate effects on salmon survival benefit from long
time series (Gargett, 1997; Mantua et al., 1997; Bea-
mish et al., 1999a; Hare et al., 1999). Using 37 yr of
data on wild SRSS chinook salmon, we found inter-
esting patterns in their SAR (Fig. 3). The observed
decline in survival during the late 1960s and early
1970s predated the oft-cited effect of the ocean ‘re-
gime shift’ that occurred in 1977 (Mantua et al., 1997;
Beamish et al., 1999b), but did coincide with the
construction of four additional dams on the lower
Snake and Columbia Rivers through which migrants
must pass (Schaller et al., 1999; Levin and Tolimieri,

2001). Furthermore, hatchery operations and habitat
modifications have also negatively affected these sal-
mon (Ruckelshaus et al., 2002). Most likely, the
aforementioned anthropogenic activities interacted
with a shift toward poor ocean conditions to drive the
observed decline in SAR (Anderson, 2000; Deriso
et al., 2001; Wilson, 2003). Since the mid-1990s
however, the SAR of this threatened fish stock has
increased, apparently resulting from combined
improvements to fish passage through the hydropower
system and better ocean conditions. Here we con-
centrated on the important role of the ocean envi-
ronment in driving the observed patterns in SAR.

We hypothesized that the CUI limits salmon sur-
vival through bottom-up forcing of the marine food
web. During the spring and summer months, coastal
upwelling events supply cool, nutrient-rich water to
phytoplankton, increasing primary production and
subsequent zooplankton production (Brodeur and
Ware, 1992). This, in turn, should translate into better
foraging conditions for juvenile salmon (Pearcy, 1992;
Gargett, 1997) that generally enter the ocean from
April through June (Miller et al., 1983). Furthermore,
the seasonal effects of the ocean environment may
persist for over a year with varying amplitude and
frequency (McGowan et al., 1998), leading to the
conditions that largely control salmon mortality dur-
ing their first year in the ocean (Pearcy, 1992). In
support of this hypothesis, we found that stronger
upwelling in April and September led to increased
SARs (Tables 1 and 2).

During the fall transition, the upwelling conditions
normally subside, resulting in decreased zooplankton
production. However, stronger downwelling in the fall
could increase food supply to salmon through two
mechanisms. First, strong fall downwelling appears to
counteract the loss of zooplankton from this region
through advective currents typically observed under
the conditions that favor upwelling (Mackas et al.,
2001). Secondly, the poleward currents associated
with downwelling events also tend to bring in south-
erly species of copepods and euphausiids from the
California Current, increasing the overall biomass of
zooplankton during the fall (Mackas et al., 2001).
These arguments therefore support our negative rela-
tionship between October downwelling (i.e. negative
upwelling) and SAR (Tables 1 and 2). Furthermore,
the transition between downwelling and upwelling
(April) and then between upwelling and downwelling
(October) is thought to be an important time of year
for salmon in the ocean as it represents larger shifts in
the physical environment and biological production
(Ware and McFarlane, 1989; Logerwell et al., 2003).

Figure 3. Time series of the smolt-to-adult survival (SAR)
for wild Snake River spring-summer chinook salmon (solid
circles) from 1964–2002 compared to (a) the 1-yr-ahead
model forecasts (triangles), and (b) the best-fit model based
on all of the available data (triangles). Dotted lines in each
panel represent the 90% credible limits around the (a)
forecast and (b) best-fit models. Inset plots show the fit be-
tween the modeled and observed SAR (scale is 0–5% for
both axes) for the (a) forecast (R2 ¼ 0.71), and (b) best-fit
models (R2 ¼ 0.96). Note that the estimates of SAR for the
2001 and 2002 outmigrations (open circles) are preliminary
in that they are based on age-3 (jack) returns in 2002 and
2003. The forecast of the SAR for the 2003 outmigration is
also shown.
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Strong summer upwelling followed by weak down-
welling may help to retain northerly species of
zooplankton and thereby provide additional food to
salmon (Mackas et al., 2001).

Our modeling approach relied on a Bayesian
framework with prior data for predicting SAR. This
might lead one to wonder whether the improved
SAR that we predicted in recent years was simply
driven by strong influence of the priors from the
1960s. To verify that this was not the case, we also
ran our analysis beginning in 2000 and moving
backwards through time to 1964. The results differed
slightly in the details, but the general pattern was the
same (R2 ¼ 0.69 for the forecast model; R2 ¼ 0.92
for the online model). Therefore, we conclude that
the improved survival in recent years is a function of
ocean-climate conditions, but acknowledge that even
if ocean-climate conditions improve dramatically,
combined effects of the ‘4 Hs’ on this, and other life
stages, may suppress adult returns to levels below
those observed in the 1960s (Kareiva et al., 2000;
Wilson, 2003). Therefore, management policies
directed at mitigating the effects of the ‘4 Hs’ on this

threatened stock of fish should explicitly address the
important role of the ocean in driving future salmon
survival (Lawson, 1993; Botsford et al., 1997; Deriso
et al., 2001).

We acknowledge that SAR is a function of ocean
conditions over the entire time period that salmon
spend at sea, but the literature certainly suggests that
the first year at sea is the most critical and largely
determines the year-class strength (Pearcy, 1992;
Gargett, 1997; Beamish and Mahnken, 2001). Thus,
we concentrated on this critical time in the life
history of salmon. Furthermore, shifts in the age at
maturity of salmon and the subsequent timing of
adult returns to freshwater could change the SAR
without any changes in ocean survival. In this case,
however, the age composition of SRSS chinook sal-
mon has shown very little systematic variation over
time with nearly equal proportions of age-4 and age-5
adults (Appendix A).

Previous investigations have used commercial
catches of salmon to illustrate a coupling between
salmon survival and ocean-climate ‘regimes’ (e.g.
Mantua et al., 1997; Beamish et al., 1999b), but they

Table 2. Dynamic linear model results for predicting smolt-to-adult survival (SAR) for wild Snake River spring-summer
chinook salmon from the monthly coastal upwelling index indices identified in Table 1. Trend refers to either a linear
(slope + intercept) or constant (intercept only) trend term. Within each trend group, models are ranked in order of increasing
predictive performance (i.e. lowest posterior negative log-likelihood [Li]). The sign of the regression coefficient for each month is
given in parentheses. The value 2Href,i provides evidence in favor of a model compared to its reference model, and 2Hmin,i

provides evidence against any model i relative to the best overall model Lmin. Values of 2H equal to 2 ()2) and 6 ()6) represent
‘positive’ evidence for (against), and ‘strong’ evidence for (against) any model i, respectively. See Methods section for details.

Trend Rank

Predictors

Li

Bayes factors

X1 X2 X3 2Href,i 2Hmin,i

Linear 1 Apr (+) Sept (+) Oct ()) 51.8* 22.4 0.0
2 Apr (+) Oct ()) 54.7 16.6 )5.8
3 Oct ()) 54.8 16.4 )6.0
4 Sept (+) Oct ()) 56.0 14.0 )8.4
5 Sept (+) 62.9 0.2 )22.2
6 63.0� 0.0 )22.4
7 Apr (+) 63.6 )1.2 )23.6
8 Apr (+) Sept (+) 63.8 )1.6 )24.0

Constant 1 Sept (+) Oct ()) 55.4 16.2 )7.2
2 Oct ()) 56.4 14.2 )9.2
3 Apr (+) Oct ()) 56.7 13.6 )9.8
4 Apr (+) Sept (+) Oct ()) 57.7 11.6 )11.8
5 Sept (+) 62.2 2.6 )20.8
6 Apr (+) Sept (+) 63.3 0.4 )23.0
7 63.5� 0.0 )23.4
8 Apr (+) 63.7 )0.4 )23.8

*The minimum negative log-likelihood (Lmin) for the entire set of models.
�The reference negative log-likelihood (Lref) for the set of models including a linear trend.
�The reference negative log-likelihood (Lref) for the set of models including a constant trend.
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are largely correlative or based on visual inspection
(Botsford and Lawrence, 2002). While these types of
analyses offer insights into general patterns, they also
tend to lose any predictive power during climate re-
gime shifts and therefore require another set of new
data to derive a new relationship after the fact
(Nickelson, 1986; Gargett, 1997). On the contrary,
our analysis using actual estimates of SAR appeared
robust to the three regime shifts that occurred in the
northeast Pacific during 1977, 1989 (Hare and
Mantua, 2000), and 1998 (Peterson and Schwing,
2003). This encouraging result might reflect our use
of a relatively small-scale ocean-climate index. Other
researchers calculate regime shifts from large-scale
basin-wide indices such as the Pacific decadal oscil-
lation (Mantua et al., 1997), but correlations between
environmental variables and salmon survival do not
generally hold at large spatial scales (Mueter et al.,
2002). For example, Logerwell et al. (2003) recently
highlighted the importance of using small-scale
oceanographic features to predict the SAR of Oregon
coastal coho salmon (O. kisutch), and found a much
stronger model fit (R2 ¼ 0.75 versus 0.47) than Kos-
low et al. (2002), who relied on a large-scale multi-
variate index of ocean conditions. Certainly the
possibility exists that the environmental indices we
used are not, in fact, the true causative agents driving
the SAR of SRSS chinook salmon, but are instead
autocorrelated with some other variable.

When SRSS chinook salmon were listed as
threatened under the Endangered Species Act in 1992,
their SAR was at an all-time low and many researchers
feared that negative anthropogenic activities (e.g. the
‘4 Hs’) would never allow the stock to recover
(Kareiva et al., 2000). However, the SAR has im-
proved dramatically in recent years, and our predic-
tions for the 2001–03 outmigrations are also quite
optimistic (Fig. 3). Given the ability of our forecast
model to capture nearly 70% of the variation in SAR,
these optimistic forecasts should assist managers in
recovery planning as they develop policies to address
an uncertain future. Furthermore, the ocean condi-
tions that favor salmon survival will likely decrease
again in the future given the cyclic nature of the NE
Pacific ecosystem (Mantua et al., 1997; Beamish et al.,
1999b). When they do, we will be able to predict the
decrease in SAR of SRSS chinook salmon 1–3 yr in
advance as the changes occur in the ocean rather than
waiting for enough data to become available and
relying on retrospective hindcasts. These forecasts in
particular should help identify necessary management
actions to ensure the persistence of this important fish
stock.
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APPENDIX

Appendix A. The number of smolts indexed by their year of
ocean entry, the total number of those smolts that returned as
adults (adjusted for any harvest), the proportion of adults in
each age class, and the subsequent smolt-to-adult survival
rate (SAR).

Year Smolts Adults

Proportion by age class
SAR
(%)Age 3 Age 4 Age 5 Age 6

1964 2900000 88732 0.049 0.399 0.552 0.000 3.06
1965 2200000 76559 0.089 0.455 0.456 0.000 3.48
1966 2800000 75882 0.086 0.530 0.384 0.000 2.71
1967 2000000 92101 0.068 0.600 0.332 0.000 4.61
1968 2100000 55093 0.087 0.614 0.299 0.000 2.62
1969 2100000 71109 0.040 0.496 0.464 0.000 3.39
1970 3200000 61813 0.073 0.372 0.555 0.000 1.93
1971 2300000 34345 0.044 0.662 0.294 0.000 1.49
1972 3200000 25670 0.029 0.428 0.543 0.000 0.80
1973 2900000 10194 0.055 0.377 0.568 0.000 0.35
1974 2100000 20953 0.007 0.415 0.578 0.000 1.00
1975 2200000 63195 0.019 0.364 0.617 0.000 2.87
1976 2500000 7972 0.113 0.465 0.422 0.000 0.32
1977 800000 4484 0.003 0.471 0.526 0.000 0.56
1978 1000000 9823 0.041 0.410 0.549 0.000 0.98
1979 1800000 12612 0.035 0.520 0.445 0.000 0.70
1980 2800000 15651 0.039 0.417 0.544 0.000 0.56
1981 1000000 6683 0.094 0.313 0.593 0.000 0.67
1982 600000 8448 0.030 0.495 0.475 0.000 1.41
1983 1200000 12374 0.034 0.434 0.532 0.000 1.03
1984 1200000 11371 0.026 0.477 0.497 0.000 0.95
1985 1158323 17528 0.032 0.350 0.618 0.000 1.51
1986 954172 4945 0.037 0.375 0.588 0.000 0.52
1987 1062161 6198 0.032 0.473 0.495 0.000 0.58

Appendix A. (Continued).

Year Smolts Adults

Proportion by age class
SAR
(%)Age 3 Age 4 Age 5 Age 6

1988 1267371 8769 0.042 0.491 0.467 0.000 0.69
1989 1239684 6636 0.012 0.241 0.747 0.000 0.54
1990 1284358 16875 0.017 0.414 0.569 0.000 1.31
1991 737063 3596 0.096 0.497 0.407 0.000 0.49
1992 527424 1046 0.121 0.334 0.545 0.000 0.20
1993 633564 1379 0.009 0.465 0.526 0.000 0.22
1994 692262 4910 0.025 0.589 0.317 0.069 0.71
1995 1432823 8632 0.029 0.428 0.535 0.008 0.60
1996 356326 1032 0.048 0.556 0.396 0.000 0.29
1997 162131 2561 0.054 0.749 0.180 0.017 1.58
1998 570109 9881 0.058 0.796 0.119 0.027 1.73
1999 1482893 55725 0.041 0.729 0.219 0.011 3.76
2000 1276133 38852 0.050 0.369 0.581 0.000 3.04
2001 480634 75841 0.17 0.83 2.992

2002 970821 19783 1.0 4.014

2003 1332333
Lower 95% CI 0.037 0.430 0.425 0.000
Mean 0.048 0.475 0.474 0.004
Upper 95% CI 0.059 0.520 0.523 0.008
1The total return for the 2001 outmigration does not contain
any age-5 adults that returned in 2004.
2The SAR for 2001 is preliminary and based on extrapolated
returns of age-3 and age-4 adults applied to the average
proportion of those age classes.
3The total return for the 2002 outmigration does not contain
any age-4 adults that returned in 2004 or any age-5 adults
that will return in 2005.
4The SAR for 2002 is preliminary and based on extrapolated
returns of age-3 adults applied to the average proportion of
those age classes.
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