Simulate Data from a MARSS Model
MARSSsimulate.Rd
Generates simulated data from a MARSS model with specified parameter estimates. This is a base function in the MARSS-package
.
Arguments
- object
- tSteps
Number of time steps in each simulation. If left off, it is taken to be consistent with
MLEobj
.- nsim
Number of simulated data sets to generate.
- silent
Suppresses progress bar.
- miss.loc
Optional matrix specifying where to put missing values. See Details.
Details
Optional argument miss.loc
is an array of dimensions n x tSteps x nsim, specifying where to put missing values
in the simulated data. If missing, this would be constructed using MLEobj$marss$data
. If the locations of the missing values are the same for all simulations, miss.loc
can be a matrix of dim=c(n, tSteps)
(the original data for example). The default, if miss.loc
is left off, is that there are no missing values even if MLEobj$marss$data
has missing values.
Value
- sim.states
Array (dim m x tSteps x nsim) of state processes simulated from parameter estimates. m is the number of states (rows in X).
- sim.data
Array (dim n x tSteps x nsim) of data simulated from parameter estimates. n is the number of rows of data (Y).
- MLEobj
The
marssMLE
object from which the data were simulated.- miss.loc
Matrix identifying where missing values were placed. It should be exactly the same dimensions as the data matrix. The location of NAs in the miss.loc matrix indicate where the missing values are.
- tSteps
Number of time steps in each simulation.
- nsim
Number of simulated data sets generated.
Examples
d <- harborSeal[, c(2, 11)]
dat <- t(d)
fit <- MARSS(dat)
#> Success! abstol and log-log tests passed at 26 iterations.
#> Alert: conv.test.slope.tol is 0.5.
#> Test with smaller values (<0.1) to ensure convergence.
#>
#> MARSS fit is
#> Estimation method: kem
#> Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001
#> Estimation converged in 26 iterations.
#> Log-likelihood: 11.74016
#> AIC: -9.480311 AICc: -6.3692
#>
#> Estimate
#> R.diag 0.0115
#> U.X.CoastalEstuaries 0.0613
#> U.X.OR.NorthCoast 0.0510
#> Q.(X.CoastalEstuaries,X.CoastalEstuaries) 0.0147
#> Q.(X.OR.NorthCoast,X.OR.NorthCoast) 0.0122
#> x0.X.CoastalEstuaries 7.3823
#> x0.X.OR.NorthCoast 6.2707
#> Initial states (x0) defined at t=0
#>
#> Standard errors have not been calculated.
#> Use MARSSparamCIs to compute CIs and bias estimates.
#>
# simulate data that are the
# same length as original data and no missing data
sim.obj <- MARSSsimulate(fit, tSteps = dim(d)[1], nsim = 5)
# simulate data that are the
# same length as original data and have missing data in the same location
sim.obj <- MARSSsimulate(fit, tSteps = dim(d)[1], nsim = 5, miss.loc = dat)