Compute Expected Value of Y, YY, and YX
MARSShatyt.Rd
Computes the expected value of random variables involving \(\mathbf{Y}\). Users can use tsSmooth()
or print( MLEobj, what="Ey")
to access this output. See print.marssMLE
.
Arguments
- MLEobj
A
marssMLE
object with thepar
element of estimated parameters,model
element with the model description and data.- only.kem
If TRUE, return only
ytT
,OtT
,yxtT
, andyxttpT
(values conditioned on the data from \(1:T\)) needed for the EM algorithm. Ifonly.kem=FALSE
, then also return values conditioned on data from 1 to \(t-1\) (Ott1
andytt1
) and 1 to \(t\) (Ott
andytt
),yxtt1T
(\(\textrm{var}[\mathbf{Y}_t, \mathbf{X}_{t-1}|\mathbf{y}_{1:T}]\)), var.ytT (\(\textrm{var}[\mathbf{Y}_t|\mathbf{y}_{1:T}]\)), and var.EytT (\(\textrm{var}_X[E_{Y|x}[\mathbf{Y}_t|\mathbf{y}_{1:T},\mathbf{x}_t]]\)).
Details
For state space models, MARSShatyt()
computes the expectations involving \(\mathbf{Y}\). If \(\mathbf{Y}\) is completely observed, this entails simply replacing \(\mathbf{Y}\) with the observed \(\mathbf{y}\). When \(\mathbf{Y}\) is only partially observed, the expectation involves the conditional expectation of a multivariate normal.
Value
A list with the following components (n is the number of state processes). Following the notation in Holmes (2012), \(\mathbf{y}(1)\) is the observed data (for \(t=1:T\)) while \(\mathbf{y}(2)\) is the unobserved data. \(\mathbf{y}(1,1:t-1)\) is the observed data from time 1 to \(t-1\).
- ytT
E[Y(t) | Y(1,1:T)=y(1,1:T)] (n x T matrix).
- ytt1
E[Y(t) | Y(1,1:t-1)=y(1,1:t-1)] (n x T matrix).
- ytt
E[Y(t) | Y(1,1:t)=y(1,1:t)] (n x T matrix).
- OtT
E[Y(t) t(Y(t)) | Y(1,1:T)=y(1,1:T)] (n x n x T array).
- var.ytT
var[Y(t) | Y(1,1:T)=y(1,1:T)] (n x n x T array).
- var.EytT
var_X[E_Y[Y(t) | Y(1,1:T)=y(1,1:T), X(t)=x(t)]] (n x n x T array).
- Ott1
E[Y(t) t(Y(t)) | Y(1,1:t-1)=y(1,1:t-1)] (n x n x T array).
- var.ytt1
var[Y(t) | Y(1,1:t-1)=y(1,1:t-1)] (n x n x T array).
- var.Eytt1
var_X[E_Y[Y(t) | Y(1,1:t-1)=y(1,1:t-1), X(t)=x(t)]] (n x n x T array).
- Ott
E[Y(t) t(Y(t)) | Y(1,1:t)=y(1,1:t)] (n x n x T array).
- yxtT
E[Y(t) t(X(t)) | Y(1,1:T)=y(1,1:T)] (n x m x T array).
- yxtt1T
E[Y(t) t(X(t-1)) | Y(1,1:T)=y(1,1:T)] (n x m x T array).
- yxttpT
E[Y(t) t(X(t+1)) | Y(1,1:T)=y(1,1:T)] (n x m x T array).
- errors
Any error messages due to ill-conditioned matrices.
- ok
(TRUE/FALSE) Whether errors were generated.
References
Holmes, E. E. (2012) Derivation of the EM algorithm for constrained and unconstrained multivariate autoregressive state-space (MARSS) models. Technical report. arXiv:1302.3919 [stat.ME] Type RShowDoc("EMDerivation",package="MARSS")
to open a copy. See the section on 'Computing the expectations in the update equations' and the subsections on expectations involving Y.
See also
MARSS()
, marssMODEL
, MARSSkem()
Examples
dat <- t(harborSeal)
dat <- dat[2:3, ]
fit <- MARSS(dat)
#> Success! abstol and log-log tests passed at 93 iterations.
#> Alert: conv.test.slope.tol is 0.5.
#> Test with smaller values (<0.1) to ensure convergence.
#>
#> MARSS fit is
#> Estimation method: kem
#> Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001
#> Estimation converged in 93 iterations.
#> Log-likelihood: 5.398098
#> AIC: 3.203804 AICc: 7.203804
#>
#> Estimate
#> R.diag 0.02219
#> U.X.CoastalEstuaries 0.06169
#> U.X.OlympicPeninsula 0.04324
#> Q.(X.CoastalEstuaries,X.CoastalEstuaries) 0.01119
#> Q.(X.OlympicPeninsula,X.OlympicPeninsula) 0.00538
#> x0.X.CoastalEstuaries 7.40989
#> x0.X.OlympicPeninsula 7.18906
#> Initial states (x0) defined at t=0
#>
#> Standard errors have not been calculated.
#> Use MARSSparamCIs to compute CIs and bias estimates.
#>
EyList <- MARSShatyt(fit)